Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Double tsunami' doubled Japan destruction

06.12.2011
Researchers have discovered that the destructive tsunami generated by the March 2011 Tôhoku-Oki earthquake was a long-hypothesized “merging tsunami” that doubled in intensity over rugged ocean ridges, amplifying its destructive power before reaching shore.

Satellites captured not just one wave front that day, but at least two, which merged to form a single double-high wave far out at sea – one capable of traveling long distances without losing its power. Ocean ridges and undersea mountain chains pushed the waves together, but only along certain directions from the tsunami’s origin.

The discovery helps explain how tsunamis can cross ocean basins to cause massive destruction at some locations while leaving others unscathed, and raises hope that scientists may be able to improve tsunami forecasts.

At a news conference Monday at the American Geophysical Union meeting in San Francisco, Y. Tony Song, a research scientist at NASA’s Jet Propulsion Laboratory (JPL); and C.K. Shum, professor and Distinguished University Scholar in the Division of Geodetic Science, School of Earth Sciences at Ohio State University, discussed the satellite data and simulations that enabled them to piece the story together.

“It was a one-in-ten-million chance that we were able to observe this double wave with satellites,” said Song, the study’s principal investigator. “Researchers have suspected for decades that such ‘merging tsunamis’ might have been responsible for the 1960 Chilean tsunami that killed many in Japan and Hawaii, but nobody had definitively observed a merging tsunami until now.”

“It was like looking for a ghost,” he continued. “A NASA/French Space Agency satellite altimeter happened to be in the right place at the right time to capture the double wave and verify its existence.”

Shum agreed. “We were very lucky, not only in the timing of the satellite, but also to have access to such detailed GPS-observed ground motion data from Japan to initiate Tony’s tsunami model, and to validate the model results using the satellite data. Now we can use what we learned to make better forecasts of tsunami danger in specific coastal regions anywhere in the world, depending on the location and the mechanism of an undersea quake.”

The NASA/Centre National d'Etudes Spaciales Jason-1 satellite passed over the tsunami on March 11, as did two other satellites: the NASA/European Jason-2 and the European Space Agency’s EnviSAT. All three carry a radar altimeter, which measures sea level changes to an accuracy of a few centimeters.

Each satellite crossed the tsunami at a different location. Jason-2 and EnviSAT measured wave heights of 20 cm (8 inches) and 30 cm (12 inches), respectively. But as Jason-1 passed over the undersea Mid-Pacific Mountains to the east, it captured a wave front measuring 70 cm (28 inches).

The researchers conjectured ridges and undersea mountain chains on the ocean floor deflected parts of the initial tsunami wave away from each other to form independent jets shooting off in different directions, each with its own wave front.

The sea floor topography nudges tsunami waves in varying directions and can make a tsunami’s destruction appear random. For that reason, hazard maps that try to predict where tsunamis will strike rely on sub-sea topography. Previously, these maps only considered topography near a particular shoreline. This study suggests scientists may be able to create maps that take into account all undersea topography, even sub-sea ridges and mountains far from shore.

Song and his team were able to verify the satellite data through model simulations based on independent data, including the GPS data from Japan and buoy data from the National Oceanic and Atmospheric Administration’s Deep-ocean Assessment and Reporting of Tsunamis program.

“Tools based on this research could help officials forecast the potential for tsunami jets to merge,” said Song. “This, in turn, could lead to more accurate coastal tsunami hazard maps to protect communities and critical infrastructure.”

Song and Shum’s collaborators include Ichiro Fukumori, an oceanographer and supervisor in JPL’s Ocean Circulation Group; and Yuchan Yi, a research scientist in the Division of Geodetic Science, School of Earth Sciences at Ohio State.

This research was supported by NASA.

Contact: Y. Tony Song via Alan Buis (818) 354-0474; alan.buis@jpl.nasa.gov
C.K. Shum, (614) 292-7118; ckshum@osu.edu
Written by Pam Frost Gorder, (Ohio State, 614) -292-9475; Gorder.1@osu.edu

C.K. Shum | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>