Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Who does what on Wikipedia?

12.03.2010
The quality of entries in the world's largest open-access online encyclopedia depends on how authors collaborate, University of Arizona Professor Sudha Ram finds

The quality of entries in the world's largest open-access online encyclopedia depends on how authors collaborate, University of Arizona Professor Sudha Ram finds.

The patterns of collaboration between Wikipedia contributors have a direct effect on the data quality of an article, according to a new paper co-authored by a University of Arizona professor and graduate student.

Sudha Ram, a UA's Eller College of Management professor, co-authored the article with Jun Liu, a graduate student in the management information systems department (MIS). Their work in this area received a "Best Paper Award" at the Workshop on Information Technology and Systems held in conjunction with the International Conference on Information Systems, or ICIS.

"Most of the existing research on Wikipedia is at the aggregate level, looking at total number of edits for an article, for example, or how many unique contributors participated in its creation," said Ram, who is a McClelland Professor of MIS in the Eller College.

"What was missing was an explanation for why some articles are of high quality and others are not," she said. "We investigated the relationship between collaboration and data quality."

Wikipedia has an internal quality rating system for entries, with featured articles at the top, followed by A, B, and C-level entries. Ram and Liu randomly collected 400 articles at each quality level and applied a data provenance model they developed in an earlier paper.

"We used data mining techniques and identified various patterns of collaboration based on the provenance or, more specifically, who does what to Wikipedia articles," Ram says. "These collaboration patterns either help increase quality or are detrimental to data quality."

Ram and Liu identified seven specific roles that Wikipedia contributors play.

Starters, for example, create sentences but seldom engage in other actions. Content justifiers create sentences and justify them with resources and links. Copy editors contribute primarily though modifying existing sentences. Some users – the all-round contributors – perform many different functions.

"We then clustered the articles based on these roles and examined the collaboration patterns within each cluster to see what kind of quality resulted," Ram said. "We found that all-round contributors dominated the best-quality entries. In the entries with the lowest quality, starters and casual contributors dominated."

To generate the best-quality entries, she says, people in many different roles must collaborate. Ram and Liu suggest that the results of this study should spark the design of software tools that can help improve quality.

"A software tool could prompt contributors to justify their insertions by adding links," she said, "and down the line, other software tools could encourage specific role setting and collaboration patterns to improve overall quality."

The impetus behind the paper came from Ram's involvement in UA's $50 million iPlant Collaborative, which is funded by the National Science Foundation and aims to unite the international scientific community around solving plant biology's "grand challenge" questions. Ram's role as a faculty advisor is to develop a cyberinfrastructure to facilitate collaboration.

"We initially suggested wikis for this, but we faced a lot of resistance," she said. Scientists expressed concerns ranging from lack of experience using the wikis to lack of incentive.

"We wondered how we could make people collaborate," Ram said. "So we looked at the English version of Wikipedia. There are more than three million entries, and thousands of people contribute voluntarily on a daily basis."

The results of this research have helped guide recommendations to the iPlant collaborators.

"If we want scientists to be collaborative," Ram said, "we need to assign them to specific roles and motivate them to police themselves and justify their contributions."

Liz Warren-Pederson | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>