Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can Video Games Teach Us How To Behave?

12.12.2011
Research focuses on the positive effects of computer games

For the first time, the positive effects of computer games on thoughts, emotions and behaviour will be the subject of closer scrutiny by social psychologists.

A total of three studies will explore how, to which extent and for how long cooperative gaming behaviour influences the personality of gamers positively. The project, funded by the Austrian Science Fund (FWF), will complete the current state of research on personality effects from computer games, which has previously been dominated by studies of negative consequences. The studies have the potential to offer significant ideas for analysing and reinforcing social skills in all age groups.

Scientists currently agree that violent video games increase aggressive tendencies. When it comes to cooperative games, i.e. games played in a team with other (human) players pursuing the same goal, however, the effects are less well known. In such games, the success of one player depends on the success of another player, and vice versa. Can these games influence the thoughts and emotions of players, as well as their cooperative behaviour? A team of social psychologists will be looking for answers in a project funded by the Austrian Science Fund.

FROM FIRST-PERSON SHOOTER TO TEAM PLAYER Prof. Tobias Greitemeyer from the Institute of Psychology at the University of Innsbruck, who is in charge of the project, explains the background: "In two earlier pilot studies, we had already noted the positive effects of collective gaming. However, to validate these findings, we must conduct more extensive, longer studies. That´s exactly what we´ll be able to do now." The project, which is about to be launched, is divided into three distinctive studies seeking to answer different questions.

The first correlational study is set to investigate the magnitude and type of impact that cooperative video games have on prosocial cognition. Participants will be interviewed about their preferences and gaming habits. Subsequent word completion tasks will highlight the prevalence of cooperative thought patterns; these are considered to be an indicator of the tendency towards community-oriented behaviour. Surveys and so-called "dilemma tasks", in which participants have to make decisions in situations of social conflict, provide clues about their social value orientation. For example, prosocial gamers can be distinguished from competitive and individualistic ones. It is this distinction that points to important correlations between gaming behaviour and emotional attitudes.

Furthermore, a longitudinal study will focus on the degree of positive effects after several months of consumption of cooperative video games. It will investigate ways of thinking and emotional attitudes, as well as behavioural patterns. Comprehensive surveys conducted on two occasions, 4-6 months apart, will demonstrate both the changes that have occurred and the predictive value of the first interview.

HIGH SCORE IN SOCIAL BEHAVIOUR
The third study in the project has an experimental design and will look at directly quantifiable causal relationships between gaming behaviour and its positive effects. In two experimental set-ups, participants will either pursue a common goal or play alone. Afterwards, the tendency towards prosocial thinking and the empathy of the players will be measured. The results of the surveys and tasks are expected to offer clues about whether prosocial thinking, emotions, such as empathy, or both, give rise to community-oriented behaviour.

All in all, the three studies have been designed using methods that seek to make them universally applicable, and to offer a scientifically substantiated result. Prof. Greitemeyer explains: "Whereas the correlational and longitudinal studies relate directly to the participants´ world of lived experience, the third study has an experimental design and therefore allows for a direct identification of causalities." The scope of the project is as comprehensive as its design: between 300 and 2.700 schoolchildren, students and adults will be interviewed over a period of 4 to 6 months. The FWF project will therefore provide the first thoroughly substantiated data on a highly topical but scarcely researched phenomenon.

Scientific contact:
Prof. Tobias Greitemeyer
Institute of Psychology
University of Innsbruck
Bruno-Sander-Haus
Innrain 52
6020 Innsbruck, Austria
T +43 / (0)512 / 507 - 37452
E tobias.greitemeyer@uibk.ac.at
Austrian Science Fund (FWF)
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http:// www.fwf.ac.at
Publication and Distribution:
PR&D - Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Stefan Bernhardt | PR&D
Further information:
http://www.fwf.ac.at

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>