Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Rumors Spread Fast in Social Networks

21.05.2012
Information spreads fast in social networks. This could be observed during recent events. Now computer scientists from the German Saarland University provide the mathematical proof for this and come up with a surprising explanation.

“It is fascinating,” Tobias Friedrich of the Cluster of Excellence on “Multimodal Computing and Interaction” says. He points out that so far, it has been assumed that the uncontrolled growth in social networks creates a structure on which information spreads very fast. “But now we can prove it in a mathematical way,” says Friedrich, who leads the independent research group “Random Structures and Algorithms.”

Together with his research colleagues Benjamin Doerr, adjunct professor for algorithms and complexity at Saarland University, and the PhD student Mahmoud Fouz he proved that information spreads in social networks much faster than in networks where everyone communicates with everyone else, or in networks whose structure is totally random.

The scientists explain their results through the successful combination of persons with many contacts and persons with only a few contacts. “A person who keeps only a few connections can inform all of these contacts very fast,” Friedrich says. Additionally, it can be proved that among these few contacts there always is a highly networked person who is contacted by a lot of other people in the social network, the scientist points out. “Therefore everybody in these networks gets informed rapidly.”

To model how people connect with each other in a social network, the scientists chose so-called preferential attachment graphs as a basic network model. It assumes that new members of a social network would more likely connect to a person maintaining many connections than to a person with only a few contacts. The communication within the network is based on the model that every person regularly exchanges all information with his or her contacts, but never speaks to the person contacted in the previous communication round.

It took the scientists twelve pages to write down the mathematical proof. They explain the concept of the proof more simply in the article “Why Rumors Spread Fast in Social Networks,” published in the peer-reviewed magazine “Communications of the ACM” in June.

Computer Science on the Saarland University campus

A unique number of renowned computer science institutes do research on the campus in Saarbrucken, Germany. In addition to the computer science faculty and the Cluster of Excellence, these include the German Research Center for Artificial Intelligence (DFKI), the Max Planck Institute for Informatics, the Max Planck Institute for Software Systems, the Center for IT Security, Privacy and Accountability and the Intel Visual Computing Institute.

See also:
Social Networks Spread Rumors in Sublogarithmic Time
www.mpi-inf.mpg.de/~tfried/paper/2012CACM.pdf
For further information please contact:
Tobias Friedrich
Cluster of Excellence “Multimodal Computing and Interaction"
Phone: 0681 9325 1055
E-Mail: t.friedrich@mpi-inf.mpg.de
Gordon Bolduan
Science Communication
Cluster of Excellence “Multimodal Computing and Interaction"
Phone: 0681 302-70741
E-Mail: bolduan@mmci.uni-saarland.de

Saar - Uni - Presseteam | Universität des Saarlandes
Further information:
http://www.uni-saarland.de
http://www.mpi-inf.mpg.de/~tfried/paper/2012CACM.pdf

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>