Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Location-based services for teenagers

22.01.2002


Mobile phones can do more than communicate voice and data. The ability to determine the physical location of a mobile phone enables a broad range of mobile services to be offered, including location tracking of users, customised local service information and navigation. A recent EURESCOM study explored the communication needs of teenagers, how they could be met by location-based services, and which location technology is best suited.



In the EURESCOM study WOMBAT (Where are the Other Mobile Buddies Around Town?) researchers from major European telecoms companies developed real-life user scenarios for teenagers to see how well the different location-based technologies could serve young people’s needs.

EURESCOM project supervisor Uwe Herzog, who is responsible for the study, gives a concrete example: "Imagine a group of teenagers who arranged to meet in town before going to a concert. One is already there and wants to know if he has enough time to do some shopping before his friends arrive. He checks his mobile device to see where they are and realises that one is passing a nearby shop. So he decides to wait for the close-by friend before going to the shop.“


The researchers identified among others, three major communication needs: to know where their peers are, to let their peers or their parents know where they are and to arrange and rearrange schedules for social events at short notice.

To make this work several requirements must be fulfilled:
- The accuracy should be better than 20 meters, both inside and outside buildings, in urban and in rural areas,
- the location information has to be up-to-date and
- more than one person at a time can be located.
After defining the needs and requirements the EURESCOM researchers compared location-based technologies to find out which suits the purpose best.

Four technologies were taken into account:

1. The Cell of Origin (COO) and the

2. Time of Arrival (TOA) are both network-based technologies, which do not require phone modifications and are not user-controlled. The first pinpoints the cell around a base station in which a mobile phone is located, with an accuracy of 150 m to 30 km depending on the cell size. The second method measures the time it takes the radio signal to reach at least three base stations from the mobile phone, localising it with an accuracy of 50 m to 200 m.

The two other methods are hybrids between phone-based and network-based technologies, thus improving user control.

3. The Enhanced Observed Time Difference (E-OTD) is based on the time measurement for signals from at least three mobile network antennas to the mobile phone and allows the phone to be located within 50 m to 125 m.

4. The Assisted Global Positioning System (A-GPS) is based on a combination of the mobile network and the satellite positioning system GPS, which is also used in the automotive sector. A-GPS allows the highest accuracy of 5 m to 100 m, but indoor operation can not be guaranteed.

The research concluded that, while the accuracy requirements they identified could be completely covered by existing technologies, it is feasible to introduce these location-based services for teenagers that either use the E-OTD method or the TOA technology today.

Uwe Herzog is convinced the introduction of UMTS will make location-based services even more attractive. He explains that “Multimedia information via UMTS, for instance, will increase the usability of navigation services”. But there are still a lot of technological and security issues to solve, he says: “We have to ensure a high accuracy in locating people, but at the same time they must be given the opportunity to choose who is allowed to track them.”

Milon Gupta | alphagalileo
Further information:
http://www.eurescom.de/public/projects/P1000-series/p1045/

More articles from Communications Media:

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

nachricht NASA Goddard network maintains communications from space to ground
02.03.2016 | NASA/Goddard Space Flight Center

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>