Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First quantum cryptographic data network demonstrated

30.08.2006
A joint collaboration between Northwestern University and BBN Technologies of Cambridge, Mass., has led to the first demonstration of a truly quantum cryptographic data network. By integrating quantum noise protected data encryption (quantum data encryption or QDE for short) with Quantum Key Distribution (QKD), the researchers have developed a complete data communication system with extraordinary resilience to eavesdropping.

"The volume and type of sensitive information being transmitted over data networks continues to grow at a remarkable pace," said Prem Kumar, professor of electrical engineering and computer science at Northwestern's Robert R. McCormick School of Engineering and Applied Science and co-principal investigator on the project. "New cryptographic methods are needed to continue ensuring that the privacy and safety of each user's information is secure."

Kumar's research team recently demonstrated a new way of encrypting data that relies on both traditional algorithms and on physical principles. This QDE method, called AlphaEta, makes use of the inherent and irreducible quantum noise in laser light to enhance the security of the system and makes eavesdropping much more difficult. Unlike most other physical encryption methods, AlphaEta maintains performance on par with traditional optical communications links and is compatible with standard fiber optical networks.

The Northwestern researchers have previously carried out several demonstrations of the compatibility and reach of the AlphaEta system in conventional wave-division multiplexed optical networks. However, in all these tests the communicating parties, called Alice and Bob, had pre-shared encryption keys for use in the AlphaEta system.

Quantum Key Distribution exploits the unique properties of quantum mechanics to securely distribute electronic keys between two parties. Unlike traditional key distribution, the security of QKD can in theory provide quantitatively secure keys regardless of advances in technology. Typically, these ultra-secure keys would be used in traditional encryption algorithms to allow for high-speed encrypted communications.

BBN has built and demonstrated the world's first quantum network with untrusted network switches, delivering end-to-end key distribution via high-speed QKD since 2004. With the Boston Metro QKD network running 24/7, it is evident that quantum cryptography works in practice and may provide a technique for building highly secure networks.

In the present advance reported here, the QKD and the QDE technologies have been interfaced together. This integration of BBN's QKD system, which constantly provides refreshed ultra-secure encryption keys, with Northwestern's AlphaEta encryption system forms a truly quantum cryptographic data network.

The combined QKD/AlphaEta system has been demonstrated in a nine kilometer link between BBN headquarters and Harvard University in Cambridge, Mass. The AlphaEta encrypted signal carried OC-3 (155Mb/s) SONET data between the two nodes. A fresh encryption key of about 1 kilobit was repetitively loaded every three seconds. In a separate test, the AlphaEta encrypted signal was looped back multiple times to create an effective 36 kilometer link where more than 300 consecutive key exchanges were demonstrated.

"As secure communications require both secure key distribution and strong encryption mechanisms, the combined QKD/AlphaEta system represents the state-of-the-art in ultra-secure high-speed optical communications," said Henry Yeh, director of programs at BBN Technologies.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>