Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile data retrieval improved with new algorithm

19.06.2006
Penn State researchers have developed a new algorithm which enables cell-phone users to fetch data from music to TV shows as quickly as feasible with minimal channel switches.

With the computing technique, mobile devices can pick up data that may have been "missed" when first broadcast, thereby alleviating the wait for subsequent broadcast cycles. Because it minimizes channel switching, the new algorithm also reduces power use, thereby extending battery life.

"Currently, mobile devices retrieve broadcast data similar to how TV viewers watch TV shows simultaneously broadcast-by switching channels," said Prasenjit Mitra, assistant professor in the College of Information Sciences and Technology (IST)."But with our algorithm, cell-phone users don't have to wait for fewer broadcast cycles to retrieve the data as the mobile device can pick up objects broadcast across parallel air channels."

The technique is described in a paper, "Efficient Object Retrieval from Parallel Air Channels in the Presence of Replicated Objects," that appears in the proceedings of the Seventh International Conference on Mobile Data Management, held in Japan in May. The other authors are Padmapriya Ayyagari, an IST graduate student, and Ali Hurson, a professor of computer science.

According to the researchers, data dissemination for mobile devices now occurs through one of two techniques: unicast, which is common when data is sent to a single person, and broadcast, when data is sent to multiple people over parallel air channels. Broadcast is more common when the same content such as emergency alerts, weather information or television shows reaches multiple people.

But the algorithm currently used can't take advantage of data that is broadcast repeatedly on different channels. Instead the data has to be broadcast in cycles. This is both time and power consuming.

"If you can retrieve all the data you want in fewer broadcast cycles, then the user saves on time and battery power," Mitra said. "The power-consumption reduction is achieved because the technique fetches all the objects requested by a client while minimizing the number of channel switches required."

As part of their study, the researchers developed and compared the performance of the four kinds of algorithms-greedy, random, branch-and-bound and select first-that could be used to improve object retrieval and reduce power consumption. Of these, the researchers' greedy algorithms created an efficient and quick solution to object retrieval that also decreased battery drain.

The researchers are continuing to explore algorithms for mobile data retrieval and anticipate developing additional ones that will even further reduce power consumption and time, Mitra said.

Margaret Hopkins | EurekAlert!
Further information:
http://www.ist.psu.edu

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>