Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bringing handheld mobile digital video broadcasting to reality

25.10.2005


The new standard for broadcasting digital video to future mobile phones, PDAs and laptops, DVB-H, is now almost complete. The next step is to begin testing the technology, and here the INSTINCT project will continue its key role.



Many industry observers see the broadcasting of video to mobile phones as the next logical development for the Digital Video Broadcasting (DVB) standard. Broadcasting digital video over the existing wireless telecom networks brings a number of technical problems in its wake as capacity in existing third generation mobile communication networks (3G) will be exceeded even by moderate use video streaming services.

So what is the solution? The DVB-H standard, or DVB for Handhelds, is intended to support digital transmission of multimedia content for handheld devices, e.g. mobile phones, PDAs, etc. To reduce the amount of power required to receive the content, DVB-H uses time slicing, which requires the handheld device to be ready to receive data only during certain time intervals.


Which is where the INSTINCT project comes in. Validating the new DVB-H standard has been its primary objective.

Focusing on the DVB-T, DVB-H and DVB-MHP (Digital Video Broadcasting – Multimedia Home Platform) standards, the INSTINCT partners are charged with developing a fully specified and open final platform for the delivery of mobile video services via mobile wireless and terrestrial broadcast networks.

Once the DVB-H standard is validated, they will apply that technology in small-scale field trials, focusing on deployment to content/service creators, user equipment makers and operators. Large-scale field trials that engage more operators and local communities will follow.

Project coordinator Tom Owens at Brunel University (UK) explains that for the DVB-H standard, broadcasting will be handled by the network operators, with suitable content sourced initially from mainstream broadcasters. The mobile terminals used will initially be ‘bimodal’ in type, able to act as both a normal mobile phone, and as a mobile receiver of broadcast DVB-H signals.

How does DVB-H overcome the limitations of available bandwidth? Owens answers with an example. “Network operators can transmit a Web page with embedded links as a broadcast page – each link would connect to more specific information on a chosen subject. When users click on a link, they activate a one-to-one download of the information they are interested in, to the broadcast part of their handheld. The advantage for the network operator is that the broadband part of the content is sent to a single receiver only, rather than being broadcast to many receivers – a system which is inherently more efficient in use of bandwidth.”

In September 2005, results from one of the world’s first commercial DVB H pilots (involving 500 users in Helsinki, Finland) revealed its popularity and a willingness to pay for mobile TV services. The study found that 41% of participants would be willing to purchase mobile TV services, and half thought that a fixed monthly fee of 10 euros was a reasonable price to pay. 58% said that they believed broadcast mobile TV services would be popular.

“The UK will have a commercial offering of some twelve to thirteen programmes in DVB-H by April 2006,” says Owens. And in North Germany, five Länder have announced their intention to work together towards the introduction of DVB-H services. The media authorities in these five regions hope to facilitate a rapid market introduction of ‘Handy-TV’ services, with trial broadcasts planned for the 2006 World Cup Finals, followed by the launch of regular services in 2007.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>