Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bringing handheld mobile digital video broadcasting to reality

25.10.2005


The new standard for broadcasting digital video to future mobile phones, PDAs and laptops, DVB-H, is now almost complete. The next step is to begin testing the technology, and here the INSTINCT project will continue its key role.



Many industry observers see the broadcasting of video to mobile phones as the next logical development for the Digital Video Broadcasting (DVB) standard. Broadcasting digital video over the existing wireless telecom networks brings a number of technical problems in its wake as capacity in existing third generation mobile communication networks (3G) will be exceeded even by moderate use video streaming services.

So what is the solution? The DVB-H standard, or DVB for Handhelds, is intended to support digital transmission of multimedia content for handheld devices, e.g. mobile phones, PDAs, etc. To reduce the amount of power required to receive the content, DVB-H uses time slicing, which requires the handheld device to be ready to receive data only during certain time intervals.


Which is where the INSTINCT project comes in. Validating the new DVB-H standard has been its primary objective.

Focusing on the DVB-T, DVB-H and DVB-MHP (Digital Video Broadcasting – Multimedia Home Platform) standards, the INSTINCT partners are charged with developing a fully specified and open final platform for the delivery of mobile video services via mobile wireless and terrestrial broadcast networks.

Once the DVB-H standard is validated, they will apply that technology in small-scale field trials, focusing on deployment to content/service creators, user equipment makers and operators. Large-scale field trials that engage more operators and local communities will follow.

Project coordinator Tom Owens at Brunel University (UK) explains that for the DVB-H standard, broadcasting will be handled by the network operators, with suitable content sourced initially from mainstream broadcasters. The mobile terminals used will initially be ‘bimodal’ in type, able to act as both a normal mobile phone, and as a mobile receiver of broadcast DVB-H signals.

How does DVB-H overcome the limitations of available bandwidth? Owens answers with an example. “Network operators can transmit a Web page with embedded links as a broadcast page – each link would connect to more specific information on a chosen subject. When users click on a link, they activate a one-to-one download of the information they are interested in, to the broadcast part of their handheld. The advantage for the network operator is that the broadband part of the content is sent to a single receiver only, rather than being broadcast to many receivers – a system which is inherently more efficient in use of bandwidth.”

In September 2005, results from one of the world’s first commercial DVB H pilots (involving 500 users in Helsinki, Finland) revealed its popularity and a willingness to pay for mobile TV services. The study found that 41% of participants would be willing to purchase mobile TV services, and half thought that a fixed monthly fee of 10 euros was a reasonable price to pay. 58% said that they believed broadcast mobile TV services would be popular.

“The UK will have a commercial offering of some twelve to thirteen programmes in DVB-H by April 2006,” says Owens. And in North Germany, five Länder have announced their intention to work together towards the introduction of DVB-H services. The media authorities in these five regions hope to facilitate a rapid market introduction of ‘Handy-TV’ services, with trial broadcasts planned for the 2006 World Cup Finals, followed by the launch of regular services in 2007.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Communications Media:

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

nachricht NASA Goddard network maintains communications from space to ground
02.03.2016 | NASA/Goddard Space Flight Center

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>