Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIEHS launches website with information for assessing environmental hazards from Hurricane Katrina

12.09.2005


A new website with a Global Information System will provide valuable information for assessing environmental hazards caused by Hurricane Katrina. The National Institute of Environmental Health Sciences (NIEHS), one of the National Institutes of Health, created the website to provide the most up-to-date data to public health and safety workers on contaminants in flood waters, infrastructure and industry maps, as well as demographic information for local populations.

The NIEHS Hurricane Katrina Information Website, accessible at www-apps.niehs.nih.gov/katrina, provides information on assessing and evaluating hundreds of potentially hazardous environmental pollutants that may pose a risk to human health. The website draws from information that NIEHS has acquired from a variety of sources including its research programs, as well as through its Superfund Basic Research Program, Worker Education and Training Program, and Environmental Health Science Centers.

The website also includes a link to a new Global Information System (GIS) that NIEHS is developing with several academic partners.



The GIS will contain layers of data, including the locations of refineries, oil pipelines, industrial facilities, Superfund sites, Toxic Release Inventory Data, agricultural operations, as well as maps and satellite images of schools, neighborhoods, and medical facilities, that will help assess the short and long effects of Katrina on the Gulf region.

"With a disaster of this magnitude, people need many things, including easy access to science based information so they can make informed decisions to further reduce their risk of harm," said NIEHS Director Dr. David Schwartz. "Consolidating information in this new website is one vehicle that NIEHS is using to help our fellow citizens."

Information in the GIS, such as the demographics of populations before Katrina will be helpful as health officials treat displaced citizens who may have been previously exposed to toxicants. Subsequent phases will provide more in-depth information to fully assess exposures and make informed decisions about risk of disease.

"This GIS has the capability of being a powerful tool to fully assess and evaluate the short- and long-term environmental health effects of Hurricane Katrina. It will help us all make informed decisions about the uncertainty of risk of exposure and potentially enable us to better understand the links between exposure and disease, "said William A. Suk, Ph.D., Director of the NIEHS Superfund Basic Research Program.

Other partners working with NIEHS in the development of the various phases of the GIS include Duke University, University of California at San Diego, University of Kentucky, Johns Hopkins, University of Arizona, Boston University, Columbia University, Research Triangle Institute and Harvard University.

The Hurricane Katrina Information Website also provides other ongoing NIEHS efforts related to recovery efforts, including collaborations with other federal agencies.

Christine Bruske | EurekAlert!
Further information:
http://www.niehs.nih.gov

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>