Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delivering next-generation mobile content

18.05.2005


With mobile phones attaining almost universal coverage in Europe, the focus has now shifted to providing the next generation of content-rich applications and services to end users.



The IST-funded project MAESTRO aims to play its part in this evolution by harnessing satellite technology together with existing 3G UMTS networks to deliver interactive digital multimedia services to mobile users.

Launched in January 2004, MAESTRO sets out to use Satellite Digital Multimedia Broadcasting (S-DMB) technology to implement a broadcast/multicast layer complementary to the existing 3G mobile networks.


As Nicolas Chuberre, MAESTRO’s project manager explains, the satellite component is designed as much as possible to reuse current 3G technology, thereby minimising the development of new products and technologies, while at the same time increasing the content delivery capacity of the networks.

“The beauty of this approach is that it allows us to provide mobile broadcast services such as mobile TV and video service delivery to 3G handsets with minimum cost impact on 3G handset terminals. S-DMB offers basically Multimedia Broadcast Multicast Service (MBMS) over nationwide umbrella cells to an unlimited audience and is compatible with open service platforms developed for 3GPP MBMS services,” he says.

Among the advantages over existing technology is that global coverage in countries such as Great Britain, France, Germany, Italy, Portugal, Spain, Poland and Greece can be achieved with a cost effective satellite/terrestrial repeater infrastructure that constitutes a single frequency network.

“Indoor coverage is achieved with a high-power geo-stationary satellite and a complementary network of terrestrial repeaters deployed in dense urban areas where the satellite power is not sufficient to achieve deep indoor penetration,” remarks Chuberre. Another bonus is the fact that S-DMB offers a flexible and environmentally-friendly add-on to the existing 3G infrastructure.

“There is very low radio wave exposure from this technology and the terrestrial repeaters are designed to be smoothly co-sited with base stations,” explains Chuberre. “They can eventually share the 3G base station antennas, as we proved in a trial of the technology in Monaco. The repeater’s transmission power is also compatible with 3G requirements and the terrestrial repeater network density is less than the one for UMTS base stations,” he says.

The Monaco trials of the system were deemed a great success by the project partners and proved beyond doubt the viability of the S-DMB technology and its ability to successfully piggyback on the existing 3G infrastructure. Further trials are planned for Toulouse, France, later this year to fine-tune the technical performance of the system.

In terms of the commercial potential of S-DMB technology, Nicolas Chuberre has no doubt that the technology developed by MODIS, the original forerunner to MAESTRO, has much to offer the telecommunications industry.

“We have started introducing the S-DMB concept to mobile and satellite operators since the beginning of this year and it has been well received by all of them. The commercial success in the USA of XM Radio and Sirius and the launching of a S-DMB system in Korea, albeit based on different technology and a different frequency band, underscores just how relevant the proposed hybrid satellite/terrestrial repeater architecture really is,” he says.

Chuberre estimates that an initial commercial rollout of the technology is possible for 2007, followed by a full-scale deployment at the beginning of 2009.

All of which is good news for 3G users keen to have streaming television and video relayed directly to their handsets for an affordable price.

“Basically S-DMB is able to deliver up to 27 mobile TV channels per umbrella cell for a monthly subscription fee in the range of 10 euros,” says Chuberre. “The service will be available anywhere in Europe and the cost impact on 3G handsets is expected to be much less than 5 euros in volume.”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Communications Media:

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

nachricht NASA Goddard network maintains communications from space to ground
02.03.2016 | NASA/Goddard Space Flight Center

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>