Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwires: replacement for the CD-ROM?

07.03.2005


A ballpoint that detects if we are forging a signature or a substitute in miniature for the CD-ROM are some of the applications that can be carried out using microwires.



3 or 5 times thinner than a human hair, these fine threads were invented in the old Soviet Union for military purposes but, the broader scientific community has been studying them for some time now for other applications – including at the University of the Basque Country (EHU).

Body and coating


Microwires have a metal body and a glass coating. The size of the metal body is usually about 1-20 ìm radius and the glass coating of between 5 and 20 ìm thickness Being so fine, the microthreads are totally flexible.

The main body of the microwire made of a ferromagnetic alloy, the composition of which varies depending on the metals used in the alloy and on the final dimensions of the thread. As a result, by balancing these two factors, the range of microwires that can be obtained is very wide. But there is one quality that they all have: they all have magnetic properties. It is precisely these magnetic properties and their diminutive size that make them so appreciated.

10 Gigabytes in 10 cm long

Amongst all the possible applications, the research team at the EHU has launched a similar project for using microwires as a system for storing information. The microwires become diminutive substitutes for the CD-ROM, given that information can be stored magnetically on them, as with CDs.

To do this, researchers use a magnetic properties present in certain microwires: the magnetic bistability associated with a circular, "bamboo"-type structure of domains. This structure presents positive and negative magnetising orientations at the surface of the microwire when this is subjected to a magnetic field, i.e. the microwire becomes magnetised. As a result, the two orientations of the magnetisation at the surface can be interpreted as the 1 and the 0 of a digital system (respectively positive and negative).

Taking this property into account, in order to create the replacement for the CD-ROM, the microwire has to be divided up along its length. Of course, the thread cannot be sectioned – the divisions are carried out internally by means of a process of anisotrophy.

The researchers calculate that a 10 cm long microwire can carry out 10 million divisions or cells and in each one of these a byte can be stored. In order to store the byte, each one of these cells is magnetised in one orientation or the other.

Once the information is recorded, a system for retrieving and reading it has to be devised. But the reading is not immediate. The initial response of the reading is an electrical signal which has to be amplified and processed in an appropriate manner in order to access the real information.

These are the targets of this project – but, of course, it is no easy task. The greatest difficulty it seems will be with the reading of information; i.e. the achievement of an electrical signal sufficiently suitable to be converted subsequently into a digital one.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>