Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwires: replacement for the CD-ROM?

07.03.2005


A ballpoint that detects if we are forging a signature or a substitute in miniature for the CD-ROM are some of the applications that can be carried out using microwires.



3 or 5 times thinner than a human hair, these fine threads were invented in the old Soviet Union for military purposes but, the broader scientific community has been studying them for some time now for other applications – including at the University of the Basque Country (EHU).

Body and coating


Microwires have a metal body and a glass coating. The size of the metal body is usually about 1-20 ìm radius and the glass coating of between 5 and 20 ìm thickness Being so fine, the microthreads are totally flexible.

The main body of the microwire made of a ferromagnetic alloy, the composition of which varies depending on the metals used in the alloy and on the final dimensions of the thread. As a result, by balancing these two factors, the range of microwires that can be obtained is very wide. But there is one quality that they all have: they all have magnetic properties. It is precisely these magnetic properties and their diminutive size that make them so appreciated.

10 Gigabytes in 10 cm long

Amongst all the possible applications, the research team at the EHU has launched a similar project for using microwires as a system for storing information. The microwires become diminutive substitutes for the CD-ROM, given that information can be stored magnetically on them, as with CDs.

To do this, researchers use a magnetic properties present in certain microwires: the magnetic bistability associated with a circular, "bamboo"-type structure of domains. This structure presents positive and negative magnetising orientations at the surface of the microwire when this is subjected to a magnetic field, i.e. the microwire becomes magnetised. As a result, the two orientations of the magnetisation at the surface can be interpreted as the 1 and the 0 of a digital system (respectively positive and negative).

Taking this property into account, in order to create the replacement for the CD-ROM, the microwire has to be divided up along its length. Of course, the thread cannot be sectioned – the divisions are carried out internally by means of a process of anisotrophy.

The researchers calculate that a 10 cm long microwire can carry out 10 million divisions or cells and in each one of these a byte can be stored. In order to store the byte, each one of these cells is magnetised in one orientation or the other.

Once the information is recorded, a system for retrieving and reading it has to be devised. But the reading is not immediate. The initial response of the reading is an electrical signal which has to be amplified and processed in an appropriate manner in order to access the real information.

These are the targets of this project – but, of course, it is no easy task. The greatest difficulty it seems will be with the reading of information; i.e. the achievement of an electrical signal sufficiently suitable to be converted subsequently into a digital one.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>