Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create Free, Downloadable Software Radio Design Tool

18.11.2004


The Mobile and Portable Radio Research Group (MPRG) in Virginia Tech’s Bradley Department of Electrical and Computer Engineering has developed the fundamental software for use in designing software radios and is offering this tool free to other wireless communications researchers throughout the world.



“The tool available on the Virginia Tech website already has been downloaded by numerous companies and universities from around the world,” said Jeffrey Reed, professor of electrical and computer engineering and deputy director of the MPRG. “Software radio technology is today where personal computer technology was in the 1970s,” said Max Robert, the MPRG post-doctoral Fellow who led development of the new tool, “OSSIE” (Open-Source Software Communication Architecture Implementation: Embedded).

Software radios can be any devices that use wireless radio frequency transmission and reception for communications — including cell phones, walkie-talkies, televisions, AM-FM radios, cordless phones, garage door openers, radar, satellites, shortwave radios, pagers and GPS (global positioning systems), to name a few.


Currently, radios of all kinds perform their signal processing — transmitting and receiving — based on dedicated hardware. A combination TV/AM-FM radio operates with two separate radios, one to receive television broadcasts and the other to receive radio broadcasts. Similarly, a combination garage door/car door opener has to be constructed with two distinct transmitters.

This dependence on dedicated hardware limits the function of a radio. For example, a fire chief using a walkie-talkie to contact the walkie-talkie carried by a policeman in a burning building has to hope that the two devices have the same type of dedicated hardware.

Using a software radio, the fire chief could simply load in software designed to communicate with the policeman’s device. This transition would be possible if the signal processing capability were defined by software, rather than by dedicated hardware. In addition, the fire chief’s software radio could communicate with a variety of other devices, such as cell phones.

The concept of software radios has been especially attractive to the U.S. Department of Defense, which years ago established the Joint Tactical Radio System (JTRS) to create general purpose hardware that can operate as software-defined radios.

This is where MPRG’s OSSIE comes into play. OSSIE is an operating environment, or software framework, that is compatible with the JTRS military hardware and is written in C++, a computer programming language commonly used by wireless researchers. OSSIE is an environment within which software radios can be programmed and can operate.

MPRG’s Robert and a team of graduate students first developed OSSIE as a tool for a software radio research project sponsored by the Office of the Director of the Central Intelligence Agency. Robert and Reed soon realized that other researchers could use OSSIE in their development of software radios. They also realized that pooling software with other researchers would add to a collective knowledge base for the creation of a variety of working software radios.

MPRG has made OSSIE an open-source tool, which means that researchers can download it for free and, in turn, are responsible for sharing their findings for free with other researchers. “Offering OSSIE as an open-source tool over the Internet will speed up growth of the technology and make faster innovations possible,” Robert said. “This will benefit all wireless researchers who are working to develop software radios.”

Researchers can download OSSIE from the Virginia Tech MPRG Web site at
http://www.mprg.org/research/ossie.

| newswise
Further information:
http://www.mprg.org/research/ossie
http://www.vt.edu

More articles from Communications Media:

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>