Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let software catch the game for you

01.07.2004


Software that can identify the significant events in live TV sports broadcasts will soon be able to compile programmes of highlights without any help from people.

The technology will save broadcasters millions in editing costs- and should eventually lead to new generations of video recorders that will let people customise their own sports highlights packages. But developing software that understands sport is no easy task.

Picking out the key events from a game- whether it be pool, rugby, baseball, soccer or basketball- is labour-intensive. As the footage streams into a TV station or outside-broadcast truck, a sports editor has to watch the action and keep notes on what happens and when. Only after that are the clips retrieved and put together to form a highlights package.



But as sports follow fixed rules, and take place in predictable locations, computers ought to be able to pick out the key pieces of play and string them together. "It is a situation that is ripe for automation," believes Andrew Kilner at Sony Broadcast in Basingstoke, UK, which makes TV broadcasting equipment.

Anil Kokaram and colleagues at Trinity College in Dublin, Ireland are among the teams trying to turn the idea into reality. They have decided to analyse table-based ball games like snooker and pool. These are sports that a computer should find relatively easy to handle as the action is slow, indoor lighting is fairly consistent and cameras mostly shoot from fixed positions.

The Trinity team’s PC-based software uses the edges of the table and the positions of the pockets to work out where the balls are on the table. The software has the rules of the game programmed in, so it can track the moving balls and work out what has happened. For example, if a ball approaches a pocket and then disappears from view, the program assumes it has been potted. By working out how to detect foul shots - when a player hits the wrong ball - the team hopes to find a way to create a compelling highlights package that includes a varied selection of the action.

Sports like American football and soccer will be much more of a challenge, because they involve a far greater number of moving objects (both teams of players plus the ball) on the field which cannot be tracked easily without massive computer power. Hampering this process, too, is the fact that the colour of the playing field is often patchy and can vary with the weather and lighting. So when the camera moves across the field, the software could mistake the different-coloured patches for extra players.

Carlo Colombo and colleagues at the University of Florence, Italy, are trying out another idea. They found that they can compile highlights from soccer footage without tracking the ball or the moving players. Instead, one of their tricks is to look at the position of the players in set pieces like corners, free kicks and penalties. Their software detects the position of the pitch markings in a shot to work out which area is in the frame (see Graphic). Then, by checking the positions the players adopt in relation to the markings, the software can decide whether a player is about to take a penalty, free kick or corner, and whether or not a goal is scored as a result. The Florence team has not yet worked out how to enable the computer to determine when a goal is scored in open play.

Ahmat Ekin, a computer scientist from the University of Rochester in New York, may be close to solving that problem. He has designed software that looks for a specific sequence of camera shots to work out whether a goal has been scored. For example, player close-ups often indicate a gap in play when something important has happened, and slow-motion footage is another useful cue. If Ekin’s software sees a sequence of player close-ups combined with shots of the crowd and pictures in slow motion that lasts between 30 and 120 seconds, it decides that a goal has been scored, and records the clip in the highlights. But it could also be possible that a controversial incident is being analysed, and Ekin aims to get round this by combining sound analysis with the pictures to give a more accurate result. For example, the software could hunt for the commentator’s extravagant shouts of "gooooaall!".

The electronics giant Sharp is now trialling a simple highlights package called Himpact with sports broadcasters. For soccer it simply searches for all replay footage, but in American football or baseball it captures all the "plays"- the action between the frequent pauses. In tests it has cut an hour of American football down to around 14 minutes, and an hour’s baseball to 10 minutes. Sharp is now seeking commercial partners to develop the technology for home video recorders. It hopes people will be able to choose a full highlights package or a customised one, in which they might choose to see only goals- or fouls, if the mood takes them.

The Japanese firm is also planning a heavyweight future for the technology: its next target market is sumo wrestling.

James Randerson | alfa
Further information:
http://www.newscientist.com

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>