Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Let software catch the game for you


Software that can identify the significant events in live TV sports broadcasts will soon be able to compile programmes of highlights without any help from people.

The technology will save broadcasters millions in editing costs- and should eventually lead to new generations of video recorders that will let people customise their own sports highlights packages. But developing software that understands sport is no easy task.

Picking out the key events from a game- whether it be pool, rugby, baseball, soccer or basketball- is labour-intensive. As the footage streams into a TV station or outside-broadcast truck, a sports editor has to watch the action and keep notes on what happens and when. Only after that are the clips retrieved and put together to form a highlights package.

But as sports follow fixed rules, and take place in predictable locations, computers ought to be able to pick out the key pieces of play and string them together. "It is a situation that is ripe for automation," believes Andrew Kilner at Sony Broadcast in Basingstoke, UK, which makes TV broadcasting equipment.

Anil Kokaram and colleagues at Trinity College in Dublin, Ireland are among the teams trying to turn the idea into reality. They have decided to analyse table-based ball games like snooker and pool. These are sports that a computer should find relatively easy to handle as the action is slow, indoor lighting is fairly consistent and cameras mostly shoot from fixed positions.

The Trinity team’s PC-based software uses the edges of the table and the positions of the pockets to work out where the balls are on the table. The software has the rules of the game programmed in, so it can track the moving balls and work out what has happened. For example, if a ball approaches a pocket and then disappears from view, the program assumes it has been potted. By working out how to detect foul shots - when a player hits the wrong ball - the team hopes to find a way to create a compelling highlights package that includes a varied selection of the action.

Sports like American football and soccer will be much more of a challenge, because they involve a far greater number of moving objects (both teams of players plus the ball) on the field which cannot be tracked easily without massive computer power. Hampering this process, too, is the fact that the colour of the playing field is often patchy and can vary with the weather and lighting. So when the camera moves across the field, the software could mistake the different-coloured patches for extra players.

Carlo Colombo and colleagues at the University of Florence, Italy, are trying out another idea. They found that they can compile highlights from soccer footage without tracking the ball or the moving players. Instead, one of their tricks is to look at the position of the players in set pieces like corners, free kicks and penalties. Their software detects the position of the pitch markings in a shot to work out which area is in the frame (see Graphic). Then, by checking the positions the players adopt in relation to the markings, the software can decide whether a player is about to take a penalty, free kick or corner, and whether or not a goal is scored as a result. The Florence team has not yet worked out how to enable the computer to determine when a goal is scored in open play.

Ahmat Ekin, a computer scientist from the University of Rochester in New York, may be close to solving that problem. He has designed software that looks for a specific sequence of camera shots to work out whether a goal has been scored. For example, player close-ups often indicate a gap in play when something important has happened, and slow-motion footage is another useful cue. If Ekin’s software sees a sequence of player close-ups combined with shots of the crowd and pictures in slow motion that lasts between 30 and 120 seconds, it decides that a goal has been scored, and records the clip in the highlights. But it could also be possible that a controversial incident is being analysed, and Ekin aims to get round this by combining sound analysis with the pictures to give a more accurate result. For example, the software could hunt for the commentator’s extravagant shouts of "gooooaall!".

The electronics giant Sharp is now trialling a simple highlights package called Himpact with sports broadcasters. For soccer it simply searches for all replay footage, but in American football or baseball it captures all the "plays"- the action between the frequent pauses. In tests it has cut an hour of American football down to around 14 minutes, and an hour’s baseball to 10 minutes. Sharp is now seeking commercial partners to develop the technology for home video recorders. It hopes people will be able to choose a full highlights package or a customised one, in which they might choose to see only goals- or fouls, if the mood takes them.

The Japanese firm is also planning a heavyweight future for the technology: its next target market is sumo wrestling.

James Randerson | alfa
Further information:

More articles from Communications Media:

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

nachricht NASA Goddard network maintains communications from space to ground
02.03.2016 | NASA/Goddard Space Flight Center

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>