Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Southampton researchers build communication tools for future missions to Mars

09.06.2004


With Mars now high on the agenda for future space exploration, researchers around the world are building and testing systems that could support long and complex scientific missions to the red planet.



Inter-planetary expeditions will take place over many years and require robust communication systems between the astronauts on Mars and scientists on Earth. Remote Science Teams (RSTs), who specialise in fields such as geology, will be formed from experts around the globe to collaborate on analysing results and providing advice and guidance to the astronauts throughout their time on the planet.

Communication delays between Earth and Mars mean that the usual ways of working together at a distance, such as real-time conversations and the sharing of computer screens, are impractical. This is further complicated by the international composition of the RST, who will be collaborating across many time zones.


To tackle these issues, researchers from the School of Electronics and Computer Science (ECS) at the University of Southampton are collaborating with NASA’s Work Systems Design and Evaluation group. Under the auspices of the e-Science-funded CoAKTinG project (part of the Southampton-coordinated Advanced Knowledge Technologies consortium) meeting replay software has been developed to support RST activities.

The meeting replay tool combines video of astronauts’ analysis and planning meetings with other materials and results, building an easy-to-use interface that lets the RST review the meeting back on Earth. This enables them to make maximum use of the data available by allowing them to quickly navigate to critical moments in the meeting record.

Researchers from the Open University, who are also part of the CoAKTinG project, have provided software that the Mars crew uses to structure scientific data and information during meetings. This is a valuable source of knowledge that feeds into the meeting replay tool.

The meeting replay tool has been put to the test as part of a wider trial of NASA technologies in the Utah desert. At the Mars Society’s Desert Research Station (MDRS) a team of geologists, programmers, engineers, and social scientists has been experiencing life and work, as MDRS Crew 29, in a simulation of the habitat in which they would be working on the surface of Mars. An RST was convened to work in parallel with the MDRS crew 29.

‘During the mission we are recording the MDRS Crew’s daily planning meetings and delivering a replay of the meeting to the RST within a few hours. By experimenting with these techniques we hope to see if the RST can gain a better understanding - not only of what a Crew is deciding, but why, and how - in order to provide the best kind of feedback,’ said Professor David De Roure.

Looking ahead 20 years, this research will prototype and evaluate tools to support scientific teamworking under such challenging circumstance.

‘This is an ambitious project on which to test the viability of key aspects of our new technology,’ said Professor Nigel Shadbolt, Director of the AKT consortium, ‘but AKT has been designed and funded to support collaborative science initiatives of the future. This is a prime example of a mission that depends on detailed planning using future technologies to manage and orchestrate complex behaviour and information.’

The Southampton ECS team comprises Dr Danius Michaelides, Kevin Page, Professor David De Roure and Professor Nigel Shadbolt.

Joyce Lewis | alfa
Further information:
http://www.marssociety.org/MDRS/fs03/crew29/

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>