Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Internet2 may change the way scientists conduct research

06.04.2004


When Dr. Robert Ballard went on a scientific expedition to Black Sea this past summer, he was able to take with him virtually any scientist or student who wanted to go. With the capability of Internet2 and a high bandwidth satellite link, scientists, for the first time, were able to work on the ocean floor from the comfort of their university laboratories.



In the April 6 issue of EOS, the weekly newspaper of the American Geophysical Union, Dr. Ballard, a University of Rhode Island geological oceanographer, describes how Internet2 could change the way scientists conduct deep-sea research.

Internet2 is a consortium of 205 universities working with industry and the government to develop and deploy an advanced Internet network that operates at 10 gigabits per second. "Instead of being restricted to one or two scientists working for a few hours within the small confines of a human-operated vehicle," said Ballard, "scientists using remotely-operated vehicles (ROVs) connected to Internet2 could spend an unlimited about of time on the bottom and share, in real-time, their observations with colleagues around the world."


The technology was put to the test this past summer when Ballard and a team of scientists traveled to the Black Sea for a research expedition sponsored in part by the National Science Foundation, the Office of Naval Research and the National Oceanic and Atmospheric Administration’s Office of Ocean Exploration, and the National Geographic Society.

Ballard explains in the article that two remotely operated vehicles working at or near the bottom of the Black Sea transmitted eight underwater video images and five acoustic signals via fiber optic cable up to the ships command/control center. Six video signals, including two high-definition images and three two-way audio channels, were transmitted off the ship via satellite, were received by an antenna in the US, and placed on Internet2.

The primary Internet2 site for the expedition was the newly created Inner Space Center at the URI Graduate School of Oceanography (GSO). Through the use of a series of plasma screens, the Inner Space Center replicates the science workstation aboard the ship. From the Inner Space Center, researchers can talk with the shipboard scientists and technicians and request images at various resolutions for examination.

"The Inner Space Center at GSO is being built to make it possible for GSO scientists and students to participate in various sea-going expeditions sponsored by the Office of Naval Research and NOAA’s Ocean Exploration program from their laboratories at the URI Bay Campus in Narragansett," said Ballard.

During the expedition Internet2 was also used at the Institute for Exploration and Mystic Aquarium to produce live programming for the general public, who were able to ask questions of the team at sea.

"The cost of physically transporting human beings in small numbers to remote regions of the world and then taking them to the bottom of the ocean in even smaller numbers for short periods of time to explore short stretches of the seafloor is clearly not an efficient way to explore the vast regions of our planet," said Ballard.


The URI Graduate School of Oceanography is one of the country’s largest marine science education programs, and one of the world’s foremost marine research institutions. Founded in 1961 in Narragansett, RI, GSO serves a community of scientists who are researching the causes of and solutions to such problems as acid rain, harmful algal blooms, global warming, air and water pollution, oil spills, overfishing, and coastal erosion. GSO is home to the Coastal Institute, the Coastal Resources Center, Rhode Island Sea Grant, the Institute for Archaeological Oceanography, and the National Sea Grant Library.

Lisa Cugini | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Communications Media:

nachricht High Number of Science Enthusiasts in Switzerland
05.02.2018 | Universität Zürich

nachricht Between filter bubbles, uneven visibility and transnationality
06.12.2017 | Schweizerischer Nationalfonds SNF

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

International team publishes roadmap to enhance radioresistance for space colonization

21.02.2018 | Physics and Astronomy

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>