Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Internet2 may change the way scientists conduct research

06.04.2004


When Dr. Robert Ballard went on a scientific expedition to Black Sea this past summer, he was able to take with him virtually any scientist or student who wanted to go. With the capability of Internet2 and a high bandwidth satellite link, scientists, for the first time, were able to work on the ocean floor from the comfort of their university laboratories.



In the April 6 issue of EOS, the weekly newspaper of the American Geophysical Union, Dr. Ballard, a University of Rhode Island geological oceanographer, describes how Internet2 could change the way scientists conduct deep-sea research.

Internet2 is a consortium of 205 universities working with industry and the government to develop and deploy an advanced Internet network that operates at 10 gigabits per second. "Instead of being restricted to one or two scientists working for a few hours within the small confines of a human-operated vehicle," said Ballard, "scientists using remotely-operated vehicles (ROVs) connected to Internet2 could spend an unlimited about of time on the bottom and share, in real-time, their observations with colleagues around the world."


The technology was put to the test this past summer when Ballard and a team of scientists traveled to the Black Sea for a research expedition sponsored in part by the National Science Foundation, the Office of Naval Research and the National Oceanic and Atmospheric Administration’s Office of Ocean Exploration, and the National Geographic Society.

Ballard explains in the article that two remotely operated vehicles working at or near the bottom of the Black Sea transmitted eight underwater video images and five acoustic signals via fiber optic cable up to the ships command/control center. Six video signals, including two high-definition images and three two-way audio channels, were transmitted off the ship via satellite, were received by an antenna in the US, and placed on Internet2.

The primary Internet2 site for the expedition was the newly created Inner Space Center at the URI Graduate School of Oceanography (GSO). Through the use of a series of plasma screens, the Inner Space Center replicates the science workstation aboard the ship. From the Inner Space Center, researchers can talk with the shipboard scientists and technicians and request images at various resolutions for examination.

"The Inner Space Center at GSO is being built to make it possible for GSO scientists and students to participate in various sea-going expeditions sponsored by the Office of Naval Research and NOAA’s Ocean Exploration program from their laboratories at the URI Bay Campus in Narragansett," said Ballard.

During the expedition Internet2 was also used at the Institute for Exploration and Mystic Aquarium to produce live programming for the general public, who were able to ask questions of the team at sea.

"The cost of physically transporting human beings in small numbers to remote regions of the world and then taking them to the bottom of the ocean in even smaller numbers for short periods of time to explore short stretches of the seafloor is clearly not an efficient way to explore the vast regions of our planet," said Ballard.


The URI Graduate School of Oceanography is one of the country’s largest marine science education programs, and one of the world’s foremost marine research institutions. Founded in 1961 in Narragansett, RI, GSO serves a community of scientists who are researching the causes of and solutions to such problems as acid rain, harmful algal blooms, global warming, air and water pollution, oil spills, overfishing, and coastal erosion. GSO is home to the Coastal Institute, the Coastal Resources Center, Rhode Island Sea Grant, the Institute for Archaeological Oceanography, and the National Sea Grant Library.

Lisa Cugini | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>