Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New marking process traces spammers, pirates and hackers

01.04.2004


Penn State researchers have proposed a new marking process for Internet messages to make it easier to trace the originators of spam, illegal copyrighted material or a virus attack.

The new marking scheme produced less than one percent false positives per 1000 attacking addresses in simulated distributed denial of service attacks and even fewer false positives and zero missed detections tracing addresses transferring copyrighted material in another simulation.

Marking messages via the Penn State approach involves no more loss of privacy than that of a postmark. Ihab Hamadeh, doctoral candidate in computer science and engineering, and Dr. George Kesidis, associate professor of electrical engineering and of computer science and engineering, developed the process.



"The technique offers internet access providers a real-time, cost-effective way to conduct forensics and improve security for the Internet," Kesidis says. "In addition, the approach will be demonstrably effective during an incremental deployment phase, thereby, creating incentives for broader deployment to satisfy the cyber security concerns of the Internet services industry and government regulators."

To defend against spam and viruses or to stop illegal file sharing, an organization must be able to identify the originator of the offending messages. However, spammers, pirates and hackers most often use incorrect, disguised or false addresses on their messages or data packets to deter trace back. Such spoofed addresses are illegal in the U.S. but so far, effective.

To overcome such spoofed source addresses, the Penn State researchers propose a strategy in which every message or data packet is marked with an identifying number by a border router. Border routers are peripheral stations that a packet passes through on its way onto the Internet.

Since every packet is forwarded onto the Internet and marked by only one trustworthy border router, spoofers would not be able to insert false marks on their packets to undermine trace back. The packets would always be traceable to a specific border router and could be stopped or investigated at that point.

While other researchers have proposed marking packets, the Penn State approach is the first to use border routers to mark packets. The marks are intended to occupy obsolete fields in the IP packet headers and are formed from the 32-bit IP addresses of the border router.

If the available obsolete field in the IP packet header is less than 32 bits long, the Penn Staters propose segmenting the border router’s IP address into several overlapping fragments that can fit. Each such fragment would be used as a possible mark by the router.

At the victim’s side, fragments from packets identified as malicious are pieced together to form the addresses of the border routers that marked and forwarded them. The overlapping fields allow the victim to correlate fragments from the same border router thereby reducing false positives.

The researchers have described their approach in two papers presented last year: "Packet Marking for Traceback of Illegal Content Distribution" and "Performance of IP Address Fragmentation Strategies for DDoS Traceback."

The University has filed an invention disclosure and is patenting the process. The research was supported, in part, by a Cisco Ltd University Research Project grant.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Communications Media:

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>