Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New marking process traces spammers, pirates and hackers

01.04.2004


Penn State researchers have proposed a new marking process for Internet messages to make it easier to trace the originators of spam, illegal copyrighted material or a virus attack.

The new marking scheme produced less than one percent false positives per 1000 attacking addresses in simulated distributed denial of service attacks and even fewer false positives and zero missed detections tracing addresses transferring copyrighted material in another simulation.

Marking messages via the Penn State approach involves no more loss of privacy than that of a postmark. Ihab Hamadeh, doctoral candidate in computer science and engineering, and Dr. George Kesidis, associate professor of electrical engineering and of computer science and engineering, developed the process.



"The technique offers internet access providers a real-time, cost-effective way to conduct forensics and improve security for the Internet," Kesidis says. "In addition, the approach will be demonstrably effective during an incremental deployment phase, thereby, creating incentives for broader deployment to satisfy the cyber security concerns of the Internet services industry and government regulators."

To defend against spam and viruses or to stop illegal file sharing, an organization must be able to identify the originator of the offending messages. However, spammers, pirates and hackers most often use incorrect, disguised or false addresses on their messages or data packets to deter trace back. Such spoofed addresses are illegal in the U.S. but so far, effective.

To overcome such spoofed source addresses, the Penn State researchers propose a strategy in which every message or data packet is marked with an identifying number by a border router. Border routers are peripheral stations that a packet passes through on its way onto the Internet.

Since every packet is forwarded onto the Internet and marked by only one trustworthy border router, spoofers would not be able to insert false marks on their packets to undermine trace back. The packets would always be traceable to a specific border router and could be stopped or investigated at that point.

While other researchers have proposed marking packets, the Penn State approach is the first to use border routers to mark packets. The marks are intended to occupy obsolete fields in the IP packet headers and are formed from the 32-bit IP addresses of the border router.

If the available obsolete field in the IP packet header is less than 32 bits long, the Penn Staters propose segmenting the border router’s IP address into several overlapping fragments that can fit. Each such fragment would be used as a possible mark by the router.

At the victim’s side, fragments from packets identified as malicious are pieced together to form the addresses of the border routers that marked and forwarded them. The overlapping fields allow the victim to correlate fragments from the same border router thereby reducing false positives.

The researchers have described their approach in two papers presented last year: "Packet Marking for Traceback of Illegal Content Distribution" and "Performance of IP Address Fragmentation Strategies for DDoS Traceback."

The University has filed an invention disclosure and is patenting the process. The research was supported, in part, by a Cisco Ltd University Research Project grant.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>