Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


For rural Pennsylvania, wireless is the ticket to the 21st century


Lehigh engineering professor is testing the usefulness of multitier networks in remote areas that lack digital and cable-modem access

When the providers of Internet services look at a map of Susquehanna County in northeastern Pennsylvania, they see a hilly, lightly populated region that offers little financial incentive to install the wires necessary for digital or cable-modem access.
When Shalinee Kishore looks at Susquehanna County, she sees a chance for wireless technology to give rural Americans the same access to modern telecommunications that urban and suburban residents enjoy.

And she feels privileged to tackle a problem that has implications for real people in the real world.

Kishore, assistant professor of electrical and computer engineering at Lehigh University, recently received a CAREER Award from the National Science Foundation to create multitier wireless networks and to demonstrate their usefulness in remote, under-served regions by developing an outreach program with Susquehanna County.

The five-year grant is one of the top national awards given to young professors in the U.S.

Multitier networks, says Kishore, can provide users in remote areas with the range of communication services people have come to expect, from high-speed Internet access at certain locations to lower-speed voice, data and messaging services everywhere.

The collaboration with Susquehanna County gives her a rare opportunity to put a "face on a research problem," Kishore says.

"As researchers, we very often work on theoretical problems. But theories need to be tested. This project allows us to test theories on a county with a distinct topography and distinct demographics.

"More than that, we get to solve problems that have interesting applications for real people. This project has enabled me to meet a lot of new people I didn’t expect to meet."

Located along the eastern edge of Pennsylvania’s long boundary with New York State, Susquehanna County contains 823 square miles, a population of 42,000 and a population density of 51 people per square mile. Only 30 percent of its residents live in the county’s six largest towns.

Susquehanna County, which advertises itself as the gateway to Pennsylvania’s "Endless Mountains," has a rugged terrain that is not hospitable to the laying of cable and wires. It does not have full cellular coverage or reliable 9-1-1 service. A satellite provides low-bit-rate coverage but at a high cost. One of the county’s six high schools has wi-fi (wireless local area network) Internet access, but overall, the county lacks localized broadband access, and its wireless links are poor.

"Because of this lack of access, the county’s residents feel they are being left behind the times," says Kishore, who was introduced to Susquehanna County the old-fashioned way - by friends and relatives who live there.

"They believe attracting Internet providers will help Susquehanna County achieve its goal of diversifying its economy and attracting more small businesses."

As part of her research project, Kishore will travel to Susquehanna County to conduct workshops and short courses for high school students, teachers, librarians and other residents on wireless technology and wireless possibilities. She will help residents develop and implement a plan to improve the county’s wireless communications infrastructure and to adapt the technology to the peculiar needs of the county.

Kishore expects county residents to seek a wide range of applications for the new technology. The county’s volunteer companies have told Kishore they would like to be able to communicate wirelessly with each other during emergencies. Hunters and farmers might want to investigate wi-fi GPS (Global Positioning System) capabilities. Students will likely want to install wi-fi Internet access at their high schools.

The other part of Kishore’s project is to test and refine the multitier wireless networks that she believes are best suited to provide Susquehanna County with wireless communications and Internet access.

Multitier wireless technology, says Kishore, simultaneously provides ubiquitous low-rate coverage and targeted high-speed access through a network of base stations and user terminals, also called radios. The radios are designed with coverage areas that vary in their order of magnitude, Kishore says. "Higher-tier radios" extend the network’s coverage area. "Lower-tier radios" target performance capabilities to specific locations.

One challenge for multitier wireless technology is to use as little bandwidth as possible. This is because the bandwidth allocated by the Federal Communications Commission is limited, requiring radios to utilize the same spectrum of bandwidth at the same time without interfering with each other.

Kishore’s goal is to optimize scarce bandwidth and minimize interference caused by reuse of the bandwidth spectrum across tiers. Her approach, she says, represents "a novel and expansive study of spectrally efficient multitier architectures.

"In the past, multitier systems have been studied primarily in the cellular context and assuming little or no spectral reuse across tiers," she wrote in her proposal to the National Science Foundation.

"As the types of services required from wireless networks become increasingly varied, it is critical to develop a general and unified framework for multitier systems - one that includes varying degrees of spectral reuse between tiers and addresses not only cellular networks but also more ad-hoc [temporary] configurations."

Kishore will study both centralized systems in which users communicate with fixed access points, then non-centralized architectures in which control is distributed among radios and ad-hoc connections are possible.

To minimize interference caused by high spectral reuse, she will explore analytical methods that account for signal processing, radio resource allocation, and access control techniques.

Kurt Pfitzer | EurekAlert!
Further information:

More articles from Communications Media:

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

nachricht NASA Goddard network maintains communications from space to ground
02.03.2016 | NASA/Goddard Space Flight Center

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>