Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For rural Pennsylvania, wireless is the ticket to the 21st century

10.03.2004


Lehigh engineering professor is testing the usefulness of multitier networks in remote areas that lack digital and cable-modem access



When the providers of Internet services look at a map of Susquehanna County in northeastern Pennsylvania, they see a hilly, lightly populated region that offers little financial incentive to install the wires necessary for digital or cable-modem access.
When Shalinee Kishore looks at Susquehanna County, she sees a chance for wireless technology to give rural Americans the same access to modern telecommunications that urban and suburban residents enjoy.

And she feels privileged to tackle a problem that has implications for real people in the real world.



Kishore, assistant professor of electrical and computer engineering at Lehigh University, recently received a CAREER Award from the National Science Foundation to create multitier wireless networks and to demonstrate their usefulness in remote, under-served regions by developing an outreach program with Susquehanna County.

The five-year grant is one of the top national awards given to young professors in the U.S.

Multitier networks, says Kishore, can provide users in remote areas with the range of communication services people have come to expect, from high-speed Internet access at certain locations to lower-speed voice, data and messaging services everywhere.

The collaboration with Susquehanna County gives her a rare opportunity to put a "face on a research problem," Kishore says.

"As researchers, we very often work on theoretical problems. But theories need to be tested. This project allows us to test theories on a county with a distinct topography and distinct demographics.

"More than that, we get to solve problems that have interesting applications for real people. This project has enabled me to meet a lot of new people I didn’t expect to meet."

Located along the eastern edge of Pennsylvania’s long boundary with New York State, Susquehanna County contains 823 square miles, a population of 42,000 and a population density of 51 people per square mile. Only 30 percent of its residents live in the county’s six largest towns.

Susquehanna County, which advertises itself as the gateway to Pennsylvania’s "Endless Mountains," has a rugged terrain that is not hospitable to the laying of cable and wires. It does not have full cellular coverage or reliable 9-1-1 service. A satellite provides low-bit-rate coverage but at a high cost. One of the county’s six high schools has wi-fi (wireless local area network) Internet access, but overall, the county lacks localized broadband access, and its wireless links are poor.

"Because of this lack of access, the county’s residents feel they are being left behind the times," says Kishore, who was introduced to Susquehanna County the old-fashioned way - by friends and relatives who live there.

"They believe attracting Internet providers will help Susquehanna County achieve its goal of diversifying its economy and attracting more small businesses."

As part of her research project, Kishore will travel to Susquehanna County to conduct workshops and short courses for high school students, teachers, librarians and other residents on wireless technology and wireless possibilities. She will help residents develop and implement a plan to improve the county’s wireless communications infrastructure and to adapt the technology to the peculiar needs of the county.

Kishore expects county residents to seek a wide range of applications for the new technology. The county’s volunteer companies have told Kishore they would like to be able to communicate wirelessly with each other during emergencies. Hunters and farmers might want to investigate wi-fi GPS (Global Positioning System) capabilities. Students will likely want to install wi-fi Internet access at their high schools.

The other part of Kishore’s project is to test and refine the multitier wireless networks that she believes are best suited to provide Susquehanna County with wireless communications and Internet access.

Multitier wireless technology, says Kishore, simultaneously provides ubiquitous low-rate coverage and targeted high-speed access through a network of base stations and user terminals, also called radios. The radios are designed with coverage areas that vary in their order of magnitude, Kishore says. "Higher-tier radios" extend the network’s coverage area. "Lower-tier radios" target performance capabilities to specific locations.

One challenge for multitier wireless technology is to use as little bandwidth as possible. This is because the bandwidth allocated by the Federal Communications Commission is limited, requiring radios to utilize the same spectrum of bandwidth at the same time without interfering with each other.

Kishore’s goal is to optimize scarce bandwidth and minimize interference caused by reuse of the bandwidth spectrum across tiers. Her approach, she says, represents "a novel and expansive study of spectrally efficient multitier architectures.

"In the past, multitier systems have been studied primarily in the cellular context and assuming little or no spectral reuse across tiers," she wrote in her proposal to the National Science Foundation.

"As the types of services required from wireless networks become increasingly varied, it is critical to develop a general and unified framework for multitier systems - one that includes varying degrees of spectral reuse between tiers and addresses not only cellular networks but also more ad-hoc [temporary] configurations."

Kishore will study both centralized systems in which users communicate with fixed access points, then non-centralized architectures in which control is distributed among radios and ad-hoc connections are possible.

To minimize interference caused by high spectral reuse, she will explore analytical methods that account for signal processing, radio resource allocation, and access control techniques.

Kurt Pfitzer | EurekAlert!
Further information:
http://www3.lehigh.edu/

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>