Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing latest-generation antennae for communications satellites

16.02.2004


For his PhD thesis, the engineer, Jorge Teniente Vallinas, has developed a method for designing antennas used in satellites such as Hispasat. The PhD, at the Public University of Navarre, was awarded the second prize in the latest edition of the Rosina Ribalta Awards from the Epson Ibérica Foundation for the best PhD thesis in the field of Information and Communications Technology.

The aims of this doctoral thesis were, on the one hand, to establish the bases for the design of Gaussian profiled corrugated antennae which has been worked on by the Public University of Navarre Antennae Group since 1995 and, on the other, to devise and design cutting edge technology of antennae, reducing machining costs and size, at the same time as maintaining the excellent radiation features, all this based on the experience acquired in the design of Gaussian profiled corrugated antennae.

More services at lower cost



The Gaussian profiled corrugated antennae are currently the best possible solution for obtaining very high gain radiation patterns. More specifically, the advantages over the classic corrugated horn antennae are twofold: firstly, it is possible to design lateral lobe antennae much lower than with any other type of corrugated profile and, also, they are somewhat shorter than the rest of the corrugated antennae.

Classical corrugated antennae, that normally have been used in high-performance applications, apart from illuminating the zone covering its target area, have lateral lobes that illuminate other zones to such an extent that they may interfere with other antennae or instruments present in these areas. However, Gaussian profiled antennae can reduce the power radiated by the lateral lobes of classical antennae - in which the power is 1000 times less than that at the main surface. The new antennae can achieve between 10 and 100 times even less than this.

The Gaussian profiled antennas have similar behaviour to the metallic end opening or horn of a wind musical instrument but, instead of transporting acoustic waves, they are designed to transport electromagnetic radiation; this is why they are also called “horn antennae”. With these antennae, radiation at microwave or millimetric frequencies enter via the narrowest, posterior part and the antennae shapes the guided waves within its interior in such a way that they come out into open space with certain characteristics, according to their profile. Corrugated antennae -with rectangular metallic folds in its interior – unlike the smooth ones, achieve an internal field shape with two characteristics: firstly, they discriminate very well between polarisations, by which each antenna can work in two channels per frequency and, secondly, the radiated surface is much more like a pure surface of free space.

Contrasted experience

Since the first patents of this type of antennae were produced at a national, at the Public University of Navarre in 1995 and 1996, it has been incorporated into a number of satellites. For example, in 1998, when this technology was still emerging, the antenna currently used by Hispasat 1C to serve Europe was designed and developed. This same antenna was also to be used, some years later, in Hispasat 1D.

In 2000, two millimetric-wave frequency antennae (about 350 GHz) were designed for the European Space Agency’s MARSCHALS project. These were instruments installed in aircraft with the aim of scanning at these frequencies the upper troposphere and the lower stratosphere, given the importance of these layers of the atmosphere for the global climate.

Since 1999, other researchers from around the world, taking advantage of the fact that the registered patents only covered national territory, have been using this type of antennae proposed by the Public University of Navarre. Thus, a group of English researchers has employed the same techniques to develop the high-frequency instrument for use in the future PLANCK satellite and another, Italian research group has used the same idea for a low-frequency instrument for use in the same satellite. Both research groups have received advice from the researchers at the Navarre-based university.

Finally, in 2002, a new design for this type of antennae, shorter and more compact, with very low lateral lobes and maintaining good levels of discrimination of polarisation and wide moderate bandwidth, was marketed by the UK company, Flann Microwave. Regarding this design, there is a request for an international patent to avoid the uncontrolled marketing by researchers from outside the Public University of Navarre.


Iñaki Casado Redin | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=417&hizk=I
http://www.unavarra.es

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>