Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From football conferences to food webs: U-M researcher uncovers patterns in complicated networks

16.02.2004


The world is full of complicated networks that scientists would like to better understand---human social systems, for example, or food webs in nature. But discerning patterns of organization in such vast, complex systems is no easy task.



"The structure of those networks can tell you quite a lot about how the systems work, but they’re far too big to analyze by just putting dots on a piece of paper and drawing lines to connect them," said Mark Newman, an assistant professor of physics and complex systems at the University of Michigan.

One challenge in making sense of a large network is finding clumps---or communities---of members that have something in common, such as Web pages that are all about the same topic, people that socialize together or animals that eat the same kind of food. Newman and collaborator Michelle Girvan, a postdoctoral fellow at the Santa Fe Institute in Santa Fe, New Mexico, have developed a new method for finding communities that reveals a lot about the structure of large, complex networks. Newman will discuss the method and its applications Feb. 15 at the annual meeting of the American Association for the Advancement of Science in Seattle.


"The way most people have approached the problem is to look for the clumps themselves---to look for things that are joined together strongly," said Newman. "We decided to approach it from the other end," by searching out and then eliminating the links that join clumps together. "When we remove those from the network, what we’re left with is the clumps."

The researchers tested their method on several networks for which the structure was already known---college football conferences, for example. In college football, teams in the same conference face off more frequently than teams in different conferences. When inter-conference games do occur, they’re more likely to be between teams that are geographically close together than between teams that are far apart. Plugging in information on frequency of games between pairs of teams in the 2000 regular season, Newman and Girvan tested their method to see if it could correctly sort the colleges into conferences. "There were a few cases where it made mistakes, but it got well over 90 percent of them right," said Newman. "It gave us the structure we were expecting, so that was encouraging."

Newman and Girvan---and other researchers who’ve learned about their work---have gone on to apply the technique to systems where the structure is not as well understood, looking at everything from networks of Spanish language web logs to communities of early jazz musicians to a food web of marine organisms living in Chesapeake Bay.

"Networks and other systems that we study are becoming increasingly large and complicated these days," said Newman. "New methods like this help us to make sense of what we see and to understand better how things work."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www-personal.umich.edu/~mejn/
http://www.aaas.org/
http://www.santafe.edu/

More articles from Communications Media:

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

nachricht High Number of Science Enthusiasts in Switzerland
05.02.2018 | Universität Zürich

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>