Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From butterfly wings to single e-mail, if one action can cause a torrent

16.02.2004


"Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?" Zoologist Konrad Lorenz once asked in postulating the "butterfly effect," the idea that the flapping of fragile wings could start a chain reaction in the atmosphere. In today’s world of the Internet the question might be rephrased: Can a single e-mail from Brazil set off a torrent of action in Texas?



Sociologists postulate that what a few influential leaders think and say can spread and grow and bring about big changes in the thinking of large numbers of people. The Internet offers a compelling new place to look for this phenomenon by studying very large groups and especially, seeing how groups change over time.

But how do you find those influential people? Computer scientists at Cornell University, Ithaca, N.Y., have some suggestions. Their ideas could be applied to such diverse goals as selling a new product, promoting new agricultural techniques in developing countries, predicting the spread of a disease or identifying leaders of terrorist organizations.


Jon Kleinberg, Cornell professor of computer science, discussed the problem, and some computer algorithms to solve it, in a talk on Feb. 15 at the annual meeting of the American Association for the Advancement of Science (AAAS) in Seattle. His talk was part of a symposium on "Community Structure of the Internet and World Wide Web: Mathematical Analyses." His research collaborators were Eva Tardos, Cornell professor of computer science, and former post-doctoral research associate David Kempe, now at the University of Washington.

A common approach used by sociologists is to interview every member of a group and find out who associates with whom -- essentially a snapshot of one moment. Collaboration with computer scientists now makes it possible to send out Web crawlers to map the communications links in a group, something that can be done repeatedly over time, and with much larger groups.

Groups on the Internet can take many forms, including Usenet and chatroom discussion groups, e-mail mailing lists and links between Web sites on related topics. Most recently, the writers of personal online journals known as Web logs, or "blogs," have begun to link to one another and comment on each other’s work.One way to find the influential people would be to identify those who have the most links to others, or the ones who can reach the largest number of others with the fewest "hops" through other people. That, Kleinberg says, introduces redundancy: the two or three top candidates could all link to the same subset of the network. So, Kleinberg suggests, "After targeting the first few people you discount others, then you look for people who are still influential but in diverse parts of the network."

The researchers tested their algorithm on another kind of network, the pattern of co-authorship in scientific papers. Their data pool was the online E-print Archive of physics and mathematics publications, commonly known as the arXiv, maintained by Cornell University Library. People were considered to be linked when they co-authored papers. The studies ignored any real-world information, such as whether two people might be at the same institution. In simulations Kleinberg and colleagues found that their method significantly outperformed methods that rely solely on counting links or measuring the distance between candidates and the rest of the network.

Kleinberg also has been studying the way networks grow over time, working with David Liben-Nowell, a Ph.D. student at the Massachusetts Institute of Technology. One goal is to try to predict where new links will form in a network. In the arXiv network, the researchers hypothesized that two people who haven’t been linked would be likely to form a link if they are near one another in linkage terms. What they found, however, was that the number of hops was not the best measure of nearness. The reason, Kleinberg says, is the "small world phenomenon" -- the fact that everyone is on average "six degrees of separation" from everyone else -- so counting the number of hops between people doesn’t help. "It’s better to look for people who have many different short paths connecting them, " he says. "This is an interesting open question with a lot of room for further research."

Bill Steele | Cornell News
Further information:
http://www.news.cornell.edu/releases/Feb04/AAAS.Kleinberg.ws.html

More articles from Communications Media:

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>