Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New lease of life for archive film footage

26.01.2004


Work to develop new methods of digitally restoring archive film footage could breathe new life into old recordings and improve on the quality of the originals.

The new approach aims to make the whole process cheaper, faster and more effective than current methods. The work could also dramatically improve public access to previously unavailable historic, artistic and cultural material.

Many historic events are captured on celluloid but its fragile nature means we are gradually losing vital aspects of our heritage. Video copies are just as vulnerable over time and they also degrade the quality of the original recording, particularly with multiple copying.



The 3-year initiative is being carried out at the University of Surrey, with funding from the Engineering and Physical Sciences Research Council (EPSRC).

Traditional approaches to restoring celluloid film mainly rely on complex techniques carried out by skilled operators. They are labour-intensive, time-consuming and very expensive. This has limited the amount of restoration work that has been undertaken to date. In addition, a lot of archive film is too fragile to be manually restored, even though it requires urgent attention.

The new project aims to tackle these problems by developing advanced image analysis and processing techniques suitable for automation by a computer or dedicated hardware. Operating at the pixel or sub-pixel level, these techniques include
motion estimation, statistical processing and application of principles of photographic
image registration. They could offer unprecedented precision and accuracy, and substantially reduce the need for human intervention.

Building on recent advances in film restoration, the researchers will probe well beyond the current state of the art. The project team is being led by Dr Theodore Vlachos of the University’s School of Electronics and Physical Sciences. “The techniques we are exploring may vastly increase access to films of major historical, cultural and artistic value”, says Dr Vlachos. “Ultimately, our work could benefit public service and commercial film archives, which are experiencing growing demand from new multimedia and broadcasting outlets”.

The work will target the key impairments of film flicker and unsteadiness, both of which interfere substantially with the viewing experience. To correct flicker, a new approach will be explored based on non-linear modelling of film exposure inconsistencies. To correct unsteadiness, the team will pioneer the use of higher-order motion models that are more realistic and maximise visual quality.

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>