Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future smart mobile has to be a true chameleon

21.01.2004


By continously adapting the receiver settings of a mobile phone to the current conditions, the advantage is twofold; facing bad reception, the connection can be improved while in good conditions, the energy consumption can be reduced. This is possible by an automatic controller developed by Lodewijk Smit of the University of Twente in The Netherlands. Smit did his PhD work on this, within the Centre of Telematics and Information Technology (CTIT).



The mobile connection can be optimized by frequently evaluating the quality and adapting the receiver of the mobile device to this level. The conditions are continuously changing. Hence, the quality of the reception is fluctuating. Modern phones will adapt to the service level required (speech, data or video) and not to the reception quality.
By using the advanced control method Smit has developed, the amount of calculation the receiver has to perform, can be decreased drastically. “In this way, it doesn’t have to work harder than strictly necessary. In bad conditions, this means using all resources for the actual signal, thus saving energy. In fair or good conditions, this means saving the battery. This is a major advantage as well. New applications put a growing strain on the battery, while the battery is not improving at the same speed.”

Lodewijk Smit started with a method for evaluating the quality in a simple and accurate way. Current methods send a lot of information over the mobile network, apart from the actual data, before quality level is determined. Smits method decreases this amount of overhead. He calculates a statistical analysis of the data received, to evaluate the probability that a sent symbol is received in the wrong way. The receiver can then be adjusted until the error level is obtained. A limited number of remaining errors is acceptable, as there are standard error-correcting codes in wireless and mobile communication.



Furthermore, Smit is able to predict the influence of the changed settings on energy consumption and connection quality. Up to now, this is not possible without complex calculation models. A major difference with current approaches is that Smit performs a global optimization of the various parts of the receiver. Usually, the parts are optimized separately: this is not necessarily an optimization of the whole.

The research is part of the CHAMELEON-project of the Centre of Telematics and Information Technology (CTIT) of the University of Twente. Within this context, new architectures are developed for energy-efficient architectures of mobile equipment. Too often, according to the CTIT-researchers, mobile devices are designed in basically the same way as desktop devices in which energy consumption is not an issue. Smit expects his method to be easily integrated into the circuits of new generations of mobiles.

Wiebe van der Veen | alfa
Further information:
http://www.cs.utwente.nl/~smitl

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>