Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teaching your cell phone where it is and how to act

07.11.2003


Future cellular telephones and other wireless communication devices are expected to be much more versatile as consumers gain the ability to program them in a variety of ways. Scientists and engineers at the National Institute of Standards and Technology (NIST) have teamed up with a variety of computing and telecommunications companies to develop both the test methods and the standard protocols needed to make this possible.



Programmable networks will include location aware services that will allow users to choose a variety of "context aware" call processing options depending on where they are and who they are with. For example, a cell phone that "knows" your location could be programmed to invoke an answering message service automatically whenever you are in a conference room or in your supervisor’s presence. Context aware, programmable cell phone or PDA networks also may help users with functional tasks like finding the nearest bank or restaurant. Within organizations, these capabilities might be used to contact people by their role and location (e.g., call the cardiologist nearest to the emergency room).

Before such capabilities can be realized on common commercial systems, groundwork must be completed to design and test open specifications of features, rules and procedures for programmable call control systems, and to develop protocols that will enable these systems to utilize context information. NIST, working with Sun Microsystems, has designed and developed new Java specifications (JAIN SIP) that provide a common platform for programmable communication devices. The NIST work is based on the Session Initiation Protocol, a specification for call control on the Internet. NIST’s open source implementation (NIST SIP) is a prototype that serves as a development guide and facilitates interoperability testing by early industry adopters of this technology.

Philip Bulman | EurekAlert!
Further information:
http://www.nist.gov

More articles from Communications Media:

nachricht Between filter bubbles, uneven visibility and transnationality
06.12.2017 | Schweizerischer Nationalfonds SNF

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>