Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ways to talk to your computer

09.10.2003


Scientists explore how we could interact with computers



Imagine ordering your meal in a restaurant by a simple tap on the table, transmitting your choice direct to the kitchens. Or placing an order for goods by making your selection on the surface of the shop window.

It may sound like science fiction, but this could be the way we interact with computers in the future, thanks to a pan-European research project, led by experts at Cardiff University, Wales, UK.


"The vast majority of us communicate with our computers using tangible interfaces such as the keyboard, mouse, games console or touch screen," said Dr Ming Yang of the University’s multi-award-winning Manufacturing Engineering Centre (MEC), which is a Welsh Development Agency centre of excellence.

"Although these are in common usage they have certain disadvantages - we are required to be ’within reach’ of the computer and most devices lack robustness (to heat, pressure, water) restricting their spheres of application. Although some voice activated and vision systems for interacting with computers do exist, they are as yet unreliable."

The vision of this new research project is to develop Tangible Acoustic Interfaces for Computer Human Interactions (TAI-CHI). It will explore how physical objects such as walls, windows and table tops, can in effect become giant 3D touch screens, acting as an interface between any computer and its user.

The whole project is based on the principle that interacting with any physical object produces acoustic waves both within the object and on its surface. By visualising and characterising such acoustic patterns and how they react when touched or moved, a new medium for communication with computers and the cyber-world can be developed.

While acoustic sensing techniques have been used for many years in both military and industrial applications, none is suitable for the multimedia applications envisaged by Tai-Chi. Some commercial products also exist, but are limited in their application to flat glass surfaces only and are restricted by size. The Tai-Chi project will go well beyond these limitations.

"Our goal is to make this technology accessible to all," said Dr Yang, who leads the Tai-Chi team at the MEC. "Once that is done, the possibilities of application are endless."

The Tai-Chi research project, supported by EC funding from the Sixth Framework Programme (FP6), sees the MEC co-ordinating the work with partners from Paris in France, Genoa and Milan in Italy, IMW in Clausthal, Germany, Lausanne in Switzerland and the University of Birmingham in the UK.

Chris Matthews | EurekAlert!
Further information:
http://www.cardiff.ac.uk/

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>