Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ways to talk to your computer

09.10.2003


Scientists explore how we could interact with computers



Imagine ordering your meal in a restaurant by a simple tap on the table, transmitting your choice direct to the kitchens. Or placing an order for goods by making your selection on the surface of the shop window.

It may sound like science fiction, but this could be the way we interact with computers in the future, thanks to a pan-European research project, led by experts at Cardiff University, Wales, UK.


"The vast majority of us communicate with our computers using tangible interfaces such as the keyboard, mouse, games console or touch screen," said Dr Ming Yang of the University’s multi-award-winning Manufacturing Engineering Centre (MEC), which is a Welsh Development Agency centre of excellence.

"Although these are in common usage they have certain disadvantages - we are required to be ’within reach’ of the computer and most devices lack robustness (to heat, pressure, water) restricting their spheres of application. Although some voice activated and vision systems for interacting with computers do exist, they are as yet unreliable."

The vision of this new research project is to develop Tangible Acoustic Interfaces for Computer Human Interactions (TAI-CHI). It will explore how physical objects such as walls, windows and table tops, can in effect become giant 3D touch screens, acting as an interface between any computer and its user.

The whole project is based on the principle that interacting with any physical object produces acoustic waves both within the object and on its surface. By visualising and characterising such acoustic patterns and how they react when touched or moved, a new medium for communication with computers and the cyber-world can be developed.

While acoustic sensing techniques have been used for many years in both military and industrial applications, none is suitable for the multimedia applications envisaged by Tai-Chi. Some commercial products also exist, but are limited in their application to flat glass surfaces only and are restricted by size. The Tai-Chi project will go well beyond these limitations.

"Our goal is to make this technology accessible to all," said Dr Yang, who leads the Tai-Chi team at the MEC. "Once that is done, the possibilities of application are endless."

The Tai-Chi research project, supported by EC funding from the Sixth Framework Programme (FP6), sees the MEC co-ordinating the work with partners from Paris in France, Genoa and Milan in Italy, IMW in Clausthal, Germany, Lausanne in Switzerland and the University of Birmingham in the UK.

Chris Matthews | EurekAlert!
Further information:
http://www.cardiff.ac.uk/

More articles from Communications Media:

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

nachricht NASA Goddard network maintains communications from space to ground
02.03.2016 | NASA/Goddard Space Flight Center

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>