Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

You Can Hear Me Now: Software Brings Cellular Capacity To Rural Communities

07.10.2003


Communications tower in DeLeon, Texas. The base station at the foot of the tower is the host for the Vanu Software Radio testbed.
Credit: Vanu, Inc. and Mid-Tex Cellular; National Science Foundation


The large, brown pieces of equipment are Mid-Tex Cellular’s current cellular communications hardware at the communications tower in DeLeon, Texas. The small, white devices on the sides are the replacement pieces including the Hewlett-Packard ProLiant server running Vanu Software Radio’s computer programs.
Credit: Vanu, Inc. and Mid-Tex Cellular; National Science Foundation


Researchers have successfully tested a system that can replace a cellular tower’s room full of communications hardware with a single desk-top style computer, making the technology affordable for small, rural communities.

The software is also capable of running emergency communications-such as police, fire and ambulance channels-on the same device as the civilian system, eliminating the need for a separate network of emergency communications towers.

"Rural customers are the first application of the technology, but large carriers are watching to see what happens," said John Chapin, chief technology officer at Vanu, Inc., the Cambridge, Mass. Company that tested and markets the software, which it calls Vanu Software Radio(tm).



Vanu scientists developed and tested the software with funds from the National Science Foundation (NSF), the independent federal agency that supports fundamental research and education across all fields of science and engineering.

"There is an economic driver to the small business projects, and both NSF and awardees have to be flexible," said Sarah Nerlove, the NSF Small Business Innovation Research (SBIR) program officer who oversees Vanu’s awards. "When the telecom industry crashed, Vanu technology caused wireless operators to look at deployments differently. Vanu was an ideal fit for their changing needs," she added.

NSF awards SBIR grants to small businesses for risky, novel research with a potential for commercialization. Through SBIR and the related Small Business Technology Transfer (STTR) programs, NSF encourages partnerships between the small business and the academic sectors to develop a technology base for commercialization.

Cellular towers now dot the landscapes of cities and suburbs, providing millions of Americans with access to wireless communications. Currently, at the base of each tower is an air conditioned shelter filled with expensive equipment called a basestation.

"As technology advances, all of that equipment continually needs to be overhauled or replaced," said John Chapin, chief technology officer at Vanu. In addition to replacing much of the equipment with a single computer server, radio software can aggregate the equipment from many stations into a single location into what communications engineers call a "basestation hotel," he said.

Vanu Software Radio(tm) is first of its kind to perform all functions of a GSM (a digital cellular standard) base station using only software and a non-specialized computer server. The servers run the Linux operating system on Pentium processors, further simplifying the technology and reducing cost.

The company successfully demonstrated the technology in two rural Texas communities: De Leon in Comanche County and Gorman in Eastland County. When the test ends, the technology will remain as a cellular infrastructure run by Mid-Tex Cellular, Ltd.

"The overall system is much cheaper and therefore offers opportunities to underserved rural areas," said Vanu basestation engineer Jeff Steinheider who led the technology installation in Texas.

Although the software currently runs on larger servers using a Linux operating system, the software also runs on a variety of commercial computers, so cellular service providers can run the product on economical systems. And, according to Chapin, the software’s portable design easily adapts to hardware upgrades. Even a personal computer could run Vanu waveform software, he said, although it could not handle a large number of customers.

The software has been successfully carrying phone calls since it was installed in the Texas towns in June 2003. The researchers have been tracking how many calls successfully go through, how well mobile phones communicate with other mobile phones and how well mobile phones communicate with landline phones.

So far, the results have been positive and by early 2004, the system is expected to become fully operational for Mid-Tex cellular customers.

Potentially, large carriers could also use the software to establish base station hotels or upgrade and condense their existing equipment. Beyond that, the technology will allow cellular providers to more efficiently use the frequency spectrum reserved for communication and are more flexible if they need to be upgraded to handle even more bandwidth, said Chapin.

Josh Chamot | NSF
Further information:
http://www.nsf.gov

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>