Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Navigating the e-mail labyrinth


Who’s in the loop?Visualization shows relationships between correspondents.

E-mail Affinities: Software groups and color codes messages by authors and overlap of subject matter, ascertained by analysis of the text.

Researchers at the University of Southern California have created a new tool for organizing and visualizing collections of electronic mail. It is designed to help legal researchers, historians, archivists, and others faced with challenges in dealing with large email archives.

For examples, consider the following cases:

* A large corporation has just received a subpoena for all email messages on a specific question. Traditional keyword searches return an enormous volume of mail that must be scanned by lawyers and paralegals for applicability. In the same way, the recipients of the subpoenaed data must analyze it. Can this process be sped up and made more efficient?

* A historian is analyzing the history of a government decision, using an email archive. Reading all the text gives a great deal of information about the decision, but only careful notes can keep track of such events as shifts over time in the distribution of information, and even then subtle changes are hard to catch. Can software help?

* A library has just received a donation of a famous scientist’s email correspondence. Besides just a simple listing of titles, addresses, and dates, is there a way that the information in the archive can be made more immediately useful and comprehensible to users?

Anton Leuski of the USC School of Engineering’s Information Sciences Institute will demonstrate a system deisgned to speak to such problems July 30 at the Association for Computing Machinery Special Interest Group conference on Information Retrieval, in Toronto, Ontario.

Called "eArchivarius," Leuski’s system uses sophisticated search software developed for Internet search engines like Google to detect important relationships between messages and people by taking advantage of inherent clues that exist in email collections.

It then automatically creates a vivid and intuitive visual interface, using spheres grouped in space to represent the relationships it discovers.

The display, a system called "Lighthouse" created earlier by Leuski and co-workers, can shuffle the connections to bring different elements to the fore.

In one display configuration, each sphere represents an author in the system. The spheres are visualized in a two- or three-dimensional space in which the distance between them indicates the number of messages exchanged over a given period.

For one collection used as an experimental exercise, exchanges of email among Reagan administration national security officials, this visualization immediately shows some recipients closely packed toward the center with their most frequent correspondents into a tight cluster, while others can immediately be seen to be literally out of the loop, far out on the periphery.

The spheres representing people can also be arranged under the influence of other factors: the content of the authored messages, for example. The resulting configuration shows existing communities of people who converse on the same topic and the relationships among those communities.

Selecting any email recipient can open up another window, which provides a list of all the people with whom the selected person exchanged mail, and a time-graphed record that shows when the exchanges took place.

"For a historian trying to understand the process by which a decision was made over a course of months, this kind of access will be extremely valuable," said Leuski, a research associate at ISI.

And the same interface can instantly return and display individual pieces of mail in the form of hypertext pages with links to the people who sent and received the email and with links to similar email messages.

"Similar messages" can be defined in terms of recipients, text keywords, or both, and in the display produced using this capability; the spheres are the messages themselves, closer to messages similar in (for example) audience. The spheres can also be colored to show other relationships. Topic similarity, for example -- the likelihood of a message to be about a particular topic can be shown by more or less intense color. Different colors indicate different topics creating a map of how the information is distributed among the messages.

"What we have in effect is a four dimensional display, with color added to the three spatial dimensions," said Douglas Oard, an associate professor of computer science from University of Maryland’s College of Information Studies and its Institute for Advanced Computer Studies who is working at ISI during a sabbatical year.

Leuski and Oard have demonstrated the ability to find interesting patterns in collections as small as a few hundred emails, and the techniques they have developed are now being applied to thousands of emails sent and received by a single individual over 18 years. Scaling up to process millions of emails involving thousands of people will be the next challenge.

The elements of eArchivarius flexible and highly useful interface, Oard says, may someday find their way into email client software.

"Email has become a major element of modern life, and the raw material of history," said Oard. "We believe that eArchivarius offers a way into the email labyrinth for researchers of all kinds."

Eric Mankin | USC
Further information:

More articles from Communications Media:

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

nachricht NASA Goddard network maintains communications from space to ground
02.03.2016 | NASA/Goddard Space Flight Center

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>