Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigating the e-mail labyrinth

11.06.2003


Who’s in the loop?Visualization shows relationships between correspondents.


E-mail Affinities: Software groups and color codes messages by authors and overlap of subject matter, ascertained by analysis of the text.


Researchers at the University of Southern California have created a new tool for organizing and visualizing collections of electronic mail. It is designed to help legal researchers, historians, archivists, and others faced with challenges in dealing with large email archives.

For examples, consider the following cases:

* A large corporation has just received a subpoena for all email messages on a specific question. Traditional keyword searches return an enormous volume of mail that must be scanned by lawyers and paralegals for applicability. In the same way, the recipients of the subpoenaed data must analyze it. Can this process be sped up and made more efficient?



* A historian is analyzing the history of a government decision, using an email archive. Reading all the text gives a great deal of information about the decision, but only careful notes can keep track of such events as shifts over time in the distribution of information, and even then subtle changes are hard to catch. Can software help?

* A library has just received a donation of a famous scientist’s email correspondence. Besides just a simple listing of titles, addresses, and dates, is there a way that the information in the archive can be made more immediately useful and comprehensible to users?

Anton Leuski of the USC School of Engineering’s Information Sciences Institute will demonstrate a system deisgned to speak to such problems July 30 at the Association for Computing Machinery Special Interest Group conference on Information Retrieval, in Toronto, Ontario.

Called "eArchivarius," Leuski’s system uses sophisticated search software developed for Internet search engines like Google to detect important relationships between messages and people by taking advantage of inherent clues that exist in email collections.

It then automatically creates a vivid and intuitive visual interface, using spheres grouped in space to represent the relationships it discovers.

The display, a system called "Lighthouse" created earlier by Leuski and co-workers, can shuffle the connections to bring different elements to the fore.

In one display configuration, each sphere represents an author in the system. The spheres are visualized in a two- or three-dimensional space in which the distance between them indicates the number of messages exchanged over a given period.

For one collection used as an experimental exercise, exchanges of email among Reagan administration national security officials, this visualization immediately shows some recipients closely packed toward the center with their most frequent correspondents into a tight cluster, while others can immediately be seen to be literally out of the loop, far out on the periphery.

The spheres representing people can also be arranged under the influence of other factors: the content of the authored messages, for example. The resulting configuration shows existing communities of people who converse on the same topic and the relationships among those communities.

Selecting any email recipient can open up another window, which provides a list of all the people with whom the selected person exchanged mail, and a time-graphed record that shows when the exchanges took place.

"For a historian trying to understand the process by which a decision was made over a course of months, this kind of access will be extremely valuable," said Leuski, a research associate at ISI.

And the same interface can instantly return and display individual pieces of mail in the form of hypertext pages with links to the people who sent and received the email and with links to similar email messages.

"Similar messages" can be defined in terms of recipients, text keywords, or both, and in the display produced using this capability; the spheres are the messages themselves, closer to messages similar in (for example) audience. The spheres can also be colored to show other relationships. Topic similarity, for example -- the likelihood of a message to be about a particular topic can be shown by more or less intense color. Different colors indicate different topics creating a map of how the information is distributed among the messages.

"What we have in effect is a four dimensional display, with color added to the three spatial dimensions," said Douglas Oard, an associate professor of computer science from University of Maryland’s College of Information Studies and its Institute for Advanced Computer Studies who is working at ISI during a sabbatical year.

Leuski and Oard have demonstrated the ability to find interesting patterns in collections as small as a few hundred emails, and the techniques they have developed are now being applied to thousands of emails sent and received by a single individual over 18 years. Scaling up to process millions of emails involving thousands of people will be the next challenge.

The elements of eArchivarius flexible and highly useful interface, Oard says, may someday find their way into email client software.

"Email has become a major element of modern life, and the raw material of history," said Oard. "We believe that eArchivarius offers a way into the email labyrinth for researchers of all kinds."



Eric Mankin | USC
Further information:
http://www.usc.edu/isinews/stories/91.html
http://www.isi.edu/~leuski/earchivarius/

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>