Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigating the e-mail labyrinth

11.06.2003


Who’s in the loop?Visualization shows relationships between correspondents.


E-mail Affinities: Software groups and color codes messages by authors and overlap of subject matter, ascertained by analysis of the text.


Researchers at the University of Southern California have created a new tool for organizing and visualizing collections of electronic mail. It is designed to help legal researchers, historians, archivists, and others faced with challenges in dealing with large email archives.

For examples, consider the following cases:

* A large corporation has just received a subpoena for all email messages on a specific question. Traditional keyword searches return an enormous volume of mail that must be scanned by lawyers and paralegals for applicability. In the same way, the recipients of the subpoenaed data must analyze it. Can this process be sped up and made more efficient?



* A historian is analyzing the history of a government decision, using an email archive. Reading all the text gives a great deal of information about the decision, but only careful notes can keep track of such events as shifts over time in the distribution of information, and even then subtle changes are hard to catch. Can software help?

* A library has just received a donation of a famous scientist’s email correspondence. Besides just a simple listing of titles, addresses, and dates, is there a way that the information in the archive can be made more immediately useful and comprehensible to users?

Anton Leuski of the USC School of Engineering’s Information Sciences Institute will demonstrate a system deisgned to speak to such problems July 30 at the Association for Computing Machinery Special Interest Group conference on Information Retrieval, in Toronto, Ontario.

Called "eArchivarius," Leuski’s system uses sophisticated search software developed for Internet search engines like Google to detect important relationships between messages and people by taking advantage of inherent clues that exist in email collections.

It then automatically creates a vivid and intuitive visual interface, using spheres grouped in space to represent the relationships it discovers.

The display, a system called "Lighthouse" created earlier by Leuski and co-workers, can shuffle the connections to bring different elements to the fore.

In one display configuration, each sphere represents an author in the system. The spheres are visualized in a two- or three-dimensional space in which the distance between them indicates the number of messages exchanged over a given period.

For one collection used as an experimental exercise, exchanges of email among Reagan administration national security officials, this visualization immediately shows some recipients closely packed toward the center with their most frequent correspondents into a tight cluster, while others can immediately be seen to be literally out of the loop, far out on the periphery.

The spheres representing people can also be arranged under the influence of other factors: the content of the authored messages, for example. The resulting configuration shows existing communities of people who converse on the same topic and the relationships among those communities.

Selecting any email recipient can open up another window, which provides a list of all the people with whom the selected person exchanged mail, and a time-graphed record that shows when the exchanges took place.

"For a historian trying to understand the process by which a decision was made over a course of months, this kind of access will be extremely valuable," said Leuski, a research associate at ISI.

And the same interface can instantly return and display individual pieces of mail in the form of hypertext pages with links to the people who sent and received the email and with links to similar email messages.

"Similar messages" can be defined in terms of recipients, text keywords, or both, and in the display produced using this capability; the spheres are the messages themselves, closer to messages similar in (for example) audience. The spheres can also be colored to show other relationships. Topic similarity, for example -- the likelihood of a message to be about a particular topic can be shown by more or less intense color. Different colors indicate different topics creating a map of how the information is distributed among the messages.

"What we have in effect is a four dimensional display, with color added to the three spatial dimensions," said Douglas Oard, an associate professor of computer science from University of Maryland’s College of Information Studies and its Institute for Advanced Computer Studies who is working at ISI during a sabbatical year.

Leuski and Oard have demonstrated the ability to find interesting patterns in collections as small as a few hundred emails, and the techniques they have developed are now being applied to thousands of emails sent and received by a single individual over 18 years. Scaling up to process millions of emails involving thousands of people will be the next challenge.

The elements of eArchivarius flexible and highly useful interface, Oard says, may someday find their way into email client software.

"Email has become a major element of modern life, and the raw material of history," said Oard. "We believe that eArchivarius offers a way into the email labyrinth for researchers of all kinds."



Eric Mankin | USC
Further information:
http://www.usc.edu/isinews/stories/91.html
http://www.isi.edu/~leuski/earchivarius/

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>