Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Talking windscreens" could help prevent accidents

09.05.2003


The driving simulator at Leeds University. Credit: University of Leeds


Drivers are four times more likely to have an accident if they use a mobile phone on the road. However, using a "talking windscreen" rather than a traditional mobile phone while driving could reduce this risk, and so help to prevent accidents, according to Oxford University research just published in Psychological Science.

A growing body of evidence shows that using a hands-free phone is as problematic for drivers as using a hand-held phone. It is probably the distraction of a driver´s attention, rather than problems with physically handling a phone, that contributes to the increased accident risk. Indeed, "inattention" has often been cited as one of the leading causes of accidents in numerous major studies of traffic accidents. Therefore anything that can improve a driver’’s concentration while using a mobile phone should help to reduce the risk of accident.

Dr Charles Spence of Oxford’s Department of Experimental Psychology and Dr Liliana Read from the Department of Transport in London found that the physical location from which a person’’s voice is heard influences a driver?s concentration. In particular, participants in their experiments found it easier to divide their attention between eye and ear if the relevant sources of information came from the same direction.



In their studies, participants were required to drive a car in the advanced driving simulator at Leeds University. A three-dimensional graphic scene of the outside world was presented on a screen in front of the windshield in real-time. Participants were asked to perform a listening and speaking task whilst simultaneously driving around suburban and inner city roads. Two loudspeakers, one placed directly in front of them and one on the side, alternately played words that participants were asked to repeat, a task known as ’’shadowing’’. People found it much easier to combine the driving and shadowing tasks if the voice they were listening to came from the loudspeaker placed directly in front of them, rather than from the side (as when drivers hold a mobile phone to their ear).

These results show that people find it much easier to look and listen in the same direction than in different directions. This is presumably because humans have evolved to deal with sights and sounds that usually originate from the same place (as when, for example, we see, hear, and feel a mosquito landing on our arm).

Dr Spence said: ’’These results highlight an important factor limiting a driver?s ability to do more than one thing at once. However, there are some measures that car designers could introduce to increase safety, such as flat-screen loudspeakers placed by the windscreen in front of the driver. Moreover, by adopting a more ecological approach to interface design in the future, it may be possible to develop multisensory warning signals that can more effectively stimulate a driver’’s senses, and so reduce the risk of accidents while driving.

’’The safest way of avoiding accidents, however, is not to use a mobile phone at all while driving.’’

Barbara Hott | alfa

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>