Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Web’s "Best Meta-Search Engine" Organizes Documents from Anywhere in Any Language

21.03.2003


Industry experts at Search Engine Watch recently named Vivísimo the Web’s Best Meta-Search Engine for its ability to instantly organize search results into a computer-generated "index." The software behind Vivísimo’s search engine can also be applied to any collection of documents, in languages ranging from English and German to Arabic and Korean.



A success story from the National Science Foundation’s (NSF) Small Business Innovation Research and computer science programs, Vivísimo’s Web site was recognized for the second consecutive year for its, "outstanding performance in helping Internet users gather results from many Web search engines by using a single service."

The Vivísimo Web site demonstrates how the technology filters and automatically categorizes responses from search requests. The results resemble a human-generated index that can help guide searchers in the right direction.


"The clustering service on our Web site and the underlying software technology show how users can comfortably explore much more information in an organized way, rather than being bombarded with disorganized information dumps," said Raul Valdes-Perez, president of Vivísimo, Inc. "Our Web site shows our business customers – whether Web, government, corporate, or publishing – what they can expect by installing our software products for their own uses."

Getting answers to broad, exploratory questions can leave searchers, especially those with little knowledge about a topic, slogging through a morass of information. For example, searching for "Iraq" among the news stories on any Web news source will result in a long list of articles on global politics. Searching the entire Web can produce a similar, mostly undifferentiated list of sites about Iraq.

This is where Vivísimo steps in. Its Clustering Engine does a quick statistical, linguistic, and knowledge-based analysis of the search results which it then clusters into themes, thereby helping to identify trends or fine-tune searches without requiring users to know the correct terminology. For example, using Vivísimo to search news sites for "Iraq" might produce clusters of news articles under categories such as "weapons inspectors," "Bush," "missiles," and so on. (The categories will change depending on the latest developments in the news.)

Vivísimo is supported by NSF’s SBIR program, which emphasizes high-risk, high-payback innovations that are tied to NSF’s mission of advancements in science, engineering and education. All proposals are evaluated on the technical merit of their research and development, as well as their technology impact. NSF was the first of 10 federal agencies required to reserve a portion of their research and development funds for the SBIR program, which is coordinated by the U.S. Small Business Administration.

Dave Hart | NSF
Further information:
http://www.nsf.gov/od/lpa/news/03/tip030320.htm
http://www.vivisimo.com/
http://vivisimo.com/news/

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>