Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NSF Releases New Report from Advisory Committee for Cyberinfrastructure


Report envisions a future cyberinfrastructure that will "radically empower" the science and engineering community

The critical needs of science and rapid progress in information technology are converging to provide a unique opportunity to create and apply a sustained cyberinfrastructure that will "radically empower" scientific and engineering research and allied education, according to the National Science Foundation (NSF)’s Advisory Committee for Cyberinfrastructure. The committee details its recommendations in a report, released today, entitled Revolutionizing Science and Engineering through Cyberinfrastructure.

Like the physical infrastructure of roads, bridges, power grids, telephone lines, and water systems that support modern society, "cyberinfrastructure" refers to the distributed computer, information and communication technologies combined with the personnel and integrating components that provide a long-term platform to empower the modern scientific research endeavor.

Cyberinfrastructure is "essential, not optional, to the aspirations of research communities." For scientists and engineers, the report states, cyberinfrastructure has the potential to "revolutionize what they can do, how they do it, and who participates." The seeds of this revolution are seen in community-driven efforts, supported by NSF and other agencies, such as the Network for Earthquake Engineering Simulations (NEES), the Grid Physics Network (GriPhyN) and the National Virtual Observatory (NVO).

"We’ve clearly documented extensive grass-roots activity in the scientific and engineering research community to create and use cyberinfrastructure to empower the next wave of discovery," said Dan Atkins, chair of the advisory committee and professor in the University of Michigan School of Information and the Department of Electrical Engineering and Computer Science. "NSF has been a catalyst for creating the conditions for a nascent cyberinfrastructure-based revolution. We’re at a new threshold where technology allows people, information, computational tools, and research instruments to be connected on a global scale."

While identifying the opportunities, the committee warned that the cyberinfrastructure that is needed cannot be created today with off-the-shelf technology. As a result, they called for increased fundamental research in computer science and engineering.

In addition to NSF’s support for projects such as NEES, GriPhyN and NVO, the report calls out NSF’s leadership in the Partnerships for Advanced Computational Infrastructure (PACI) program, the TeraGrid effort, the NSF Middleware Initiative (NMI), the Digital Libraries Initiative and the Information Technology Research program as providing a solid foundation for the future cyberinfrastructure.

Its unique breadth of scientific scope and prior investments position NSF to lead an interagency program to develop an advanced cyberinfrastructure for the nation, according to the report. To reach critical mass, an advanced cyberinfrastructure activity would require interagency partnerships as well as collaboration between the physical and life sciences, computer science, and the social sciences.

"On behalf of NSF, I want to extend a strong thanks to the Advisory Committee for Cyberinfrastructure for the excellent job they have done in highlighting the importance of cyberinfrastructure to all of science and engineering research and education," said Peter Freeman, NSF Assistant Director for Computer and Information Science and Engineering and NSF’s coordinator for cyberinfrastructure. "The extensive efforts they have made in bringing together in one place the ideas and visions of all segments of the science and engineering community will be extremely useful to NSF as we move forward to exploit the opportunities they have identified."

The report recommends that a cyberinfrastructure program encompass fundamental cyberinfrastructure research, research on science and engineering applications of the cyberinfrastructure, development of production-quality software, and equipment and operations.

The report emphasizes the importance of acting quickly and the risks of failing to do so. The risks include lack of coordination, which could leave key data in irreconcilable formats; long-term failures to archive and curate data collected at great expense; and artificial barriers between disciplines built from incompatible tools and structures.

The opportunity is evidenced by both progress from developments in information technology and the mushrooming of cyberinfrastructure projects for specific fields, initiated by scientists in those fields. The NSF has a once-in-a-generation opportunity," according to the committee, to lead the scientific and engineering community in the coordinated development and expansive use of cyberinfrastructure.

For more on the NSF Advisory Committee for Cyberinfrastructure:

NSF Cyberinfrastructure Coordinator: Peter Freeman, 703-2928900,
Advisory Committee Chair: Dan Atkins, 734-647-7312,

David Hart, | National Science Foundation
Further information:

More articles from Communications Media:

nachricht High Number of Science Enthusiasts in Switzerland
05.02.2018 | Universität Zürich

nachricht Between filter bubbles, uneven visibility and transnationality
06.12.2017 | Schweizerischer Nationalfonds SNF

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>