Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protocol speeds up Internet resource sharing

30.01.2003


A Penn State researcher has developed a faster method for more efficient sharing of widely distributed Internet resources such as Web services, databases and high performance computers.

Jonghun Park, assistant professor in Penn State’s School of Information Sciences and Technology (IST) who has proposed the protocol, says the new technology speeds up to 10 times faster the allocation of Internet resources.

"In the near future, the demand for collaborative Internet applications will grow," Park says. "Better coordination will be required to meet that demand, and this protocol provides that."



The Penn State scientist describes his research today (Jan. 29) in a paper, "A Scalable Protocol for Deadlock and Livelock Free Co-Allocation of Resources in Internet Computing," at IEEE’s Symposium on Applications and the Internet in Orlando, Fla.

Park’s proposed algorithm enables better coordination of Internet applications in support of large-scale computing. The protocol uses parallel rather than serial methods to process requests. That helps with more efficient resource allocation as well as solves the problems of deadlock and livelock caused by multiple concurrent Internet applications competing for Internet resources.

The new protocol also allows for Internet applications to choose among available resources. Existing technology can’t support making choices, thereby limiting its utilization. Its other advantage: Because it is decentralized, Park’s proposed protocol can function with its own information. That allows for collaboration across multiple, independent organizations in the open environment of the Internet. Existing protocols require communication with other applications - - not feasible in the open environment of the Internet.

Internet computing -- the integration of widely distributed computational and informational resources into a cohesive network -- allows for a broader exchange of information among more users than is possible today. Those can range from the military and government to businesses.

One example of such collaboration is Grid Computing that, much like electricity grids, harnesses available Internet resources in support of large-scale, scientific computing. Right now, the deployment of such virtual organizations is limited because they require a more sophisticated method to coordinate the resource allocation. Park’s decentralized protocol could provide that.

Margaret Hopkins | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Communications Media:

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>