Bradford involved in Olympic TV revolution

LIVE is an integrated research project partially funded under the European Union's IST Sixth Framework Programme. It is being co-ordinated from the Fraunhofer Institute IAIS in Germany and involves a number of partner organisations across Europe, including the University of Bradford.

The LIVE system will make it possible to produce a national Olympic TV programme in which thematically interlinked channels are produced on-demand according viewer feedback and the unfolding live action.

In the time-critical production process of live broadcasting there is little time to search databases for new material so archival content is usually pre-selected. This places a constraint on the ability of the production team to respond to unforeseen events or even satisfy creative impulses during a live broadcast.

The innovation behind LIVE therefore is the ability to analyse, link and recommend content from multiple content sources in the spontaneous and fast moving environment of the live broadcast. During a live broadcast, the LIVE system automatically analyses and aligns content coming in from the multiple incoming streams and available archive material. Additionally, feedback coming in from the TV viewers (switching behaviour and on-screen polls) is also analysed. The meaningful connections between viewer preferences and analysed video material are then processed in real-time and fed into the control room to guide the production process.

Researchers led by Jianmin Jiang, Professor of Digital Media in the University of Bradford’s School of Informatics, are playing leading roles in developing computerised algorithms for automatic and online video content processing and analysis over the incoming camera streams, and thus providing a range of computer-based tools for content producers to deliver the LIVE project concepts and objectives.

Technologies innovated by Bradford researchers include:

• compressed domain shot cut detections to divide video sequences automatically into content-consistent sections to enable content analysis on both temporal and spatial basis

• semantics and metadata extraction via approaches of low-level feature based content processing such as close-up detection, pattern recognition such as face recognition, and machine learning such as SVMs

• video summarization via V-unit detection and adaptive clustering approaches;

• sport video annotation via multiple SVM learning and classifications.

Professor Jiang said: “Reporting real-time live action such as the Olympic Games has always involved a unique style of broadcasting. It involves capturing live action as it unravels, where anything can and so often does happen. However, despite today’s advances in technology and interactive TV formats it remains a single channel broadcast approach. Bradford’s strength is computerised video processing directly in compressed domain, providing extremely fast and low-cost technologies for live video production.

“LIVE is a very important opportunity for us to bridge the gap between computer scientists and media content producers. Research expertise within the School of Informatics has a huge contribution to make to this project and we are very excited to be involved.”

The LIVE production system will be tested at ORF (Austrian Broadcasting Corporation) during the Beijing Olympic Games. A total of 500 Austrian households will be provided with the necessary set-top boxes to view and interact with the “LIVE Olympic Show”.

Over the two-week period a total of four interlinked channels will be produced. If successful, LIVE could change the way we view live events such as the Olympics, the FIFA World Cup or a political election – on a permanent basis.

Beyond the clear advantage of having fuller coverage of the event itself, those irritating moments of not knowing about the details of a sporting event (e.g. details about the contestants, the history behind it or, information on the venue) will be conveniently dispensed with by the power of this latest and pioneering broadcasting information technology.

For the first time it will be possible to serve the always diverse moods of viewers by simultaneously offering multiple points of view on one and the same live event.

For more information about the University of Bradford’s contribution to the LIVE project, contact Professor Jianmin Jiang on +44 (0) 1274 233695 or email J.Jiang1@Bradford.ac.uk

See a video explaining the LIVE project on their website: www.ist-live.org

Media Contact

Oliver Tipper alfa

More Information:

http://www.ist-live.org

All latest news from the category: Communications Media

Engineering and research-driven innovations in the field of communications are addressed here, in addition to business developments in the field of media-wide communications.

innovations-report offers informative reports and articles related to interactive media, media management, digital television, E-business, online advertising and information and communications technologies.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors