Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Irish radar detection research project takes off

13.02.2008
• CTVR aims to commercialise new ‘see through the wall’ technology
• UWB radar systems to potentially be applied in medical & security sectors

The Centre for Telecommunications Value-Chain Research (CTVR) today announced that a research project into ultra-wideband (UWB) radar detection systems being carried by a team at the Dublin Institute of Technology (DIT) has been backed by Enterprise Ireland.

Ultra-wideband precision radar imaging technology - ‘see-through-the-wall’ radar - can be used in a range of different sectors, from locating persons buried underground in emergency situations, to providing accurate data on patients under ongoing medical supervision, to vehicular anti-collision systems.

The team at the DIT’s Antenna & High Frequency Research Group (AHFR), part of the CTVR’s wider research group, has developed new antenna designs that increase the levels of accuracy of UWB radar systems. In turn, improved accuracy of UWB radar will ultimately allow developers to create applications that can be promoted and marketed commercially.

Professor Donal O’Mahony, Director, CTVR, said: “This research work, which has already been the subject of papers published in some of the world's leading scientific journals, is also hugely significant from a commercial point of view. Our goal from the beginning has been to facilitate the efforts of companies in Ireland to unlock the commercial value of this new technology”.

Dr Max Ammann, Senior Lecturer, Electronic & Communications Engineering, DIT, said: “The support from Enterprise Ireland will allow us to move the project forward, so that our research can move beyond the lab and support the commercialisation of UWB radar systems. At DIT, we have built a strong track record in helping to bring new technologies to the market place, and this is just the latest stage in that process”.

The UWB technology that is being developed may also have extensive application in the communications arena, in terms of allowing laptops to connect wirelessly to office networks, delivering wireless connections between consumer electronics devices or facilitating data streaming from a camcorder to the hard drive of a PC.

The AHFR team at DIT has carried out extensive research in the application of UWB technology for communications purposes. Last year, the team developed new antenna designs to allow for high speed links between communication devices.

In addition, vehicular or automotive radar systems are currently being promoted as another possible use for UWB technology. These systems can potentially be used to improve automotive safety through collision avoidance systems, safer use of airbags, restraint system arming, and parking assistance.

The use of UWB technology in communications systems evolved during the 1980s to meet the needs of US government agencies, especially for communications systems with low intercept and detection probability. Today, interest in UWB devices extends to civilian use.

Penny Storey | alfa
Further information:
http://www.ctvr.ie

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>