Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Irish radar detection research project takes off

13.02.2008
• CTVR aims to commercialise new ‘see through the wall’ technology
• UWB radar systems to potentially be applied in medical & security sectors

The Centre for Telecommunications Value-Chain Research (CTVR) today announced that a research project into ultra-wideband (UWB) radar detection systems being carried by a team at the Dublin Institute of Technology (DIT) has been backed by Enterprise Ireland.

Ultra-wideband precision radar imaging technology - ‘see-through-the-wall’ radar - can be used in a range of different sectors, from locating persons buried underground in emergency situations, to providing accurate data on patients under ongoing medical supervision, to vehicular anti-collision systems.

The team at the DIT’s Antenna & High Frequency Research Group (AHFR), part of the CTVR’s wider research group, has developed new antenna designs that increase the levels of accuracy of UWB radar systems. In turn, improved accuracy of UWB radar will ultimately allow developers to create applications that can be promoted and marketed commercially.

Professor Donal O’Mahony, Director, CTVR, said: “This research work, which has already been the subject of papers published in some of the world's leading scientific journals, is also hugely significant from a commercial point of view. Our goal from the beginning has been to facilitate the efforts of companies in Ireland to unlock the commercial value of this new technology”.

Dr Max Ammann, Senior Lecturer, Electronic & Communications Engineering, DIT, said: “The support from Enterprise Ireland will allow us to move the project forward, so that our research can move beyond the lab and support the commercialisation of UWB radar systems. At DIT, we have built a strong track record in helping to bring new technologies to the market place, and this is just the latest stage in that process”.

The UWB technology that is being developed may also have extensive application in the communications arena, in terms of allowing laptops to connect wirelessly to office networks, delivering wireless connections between consumer electronics devices or facilitating data streaming from a camcorder to the hard drive of a PC.

The AHFR team at DIT has carried out extensive research in the application of UWB technology for communications purposes. Last year, the team developed new antenna designs to allow for high speed links between communication devices.

In addition, vehicular or automotive radar systems are currently being promoted as another possible use for UWB technology. These systems can potentially be used to improve automotive safety through collision avoidance systems, safer use of airbags, restraint system arming, and parking assistance.

The use of UWB technology in communications systems evolved during the 1980s to meet the needs of US government agencies, especially for communications systems with low intercept and detection probability. Today, interest in UWB devices extends to civilian use.

Penny Storey | alfa
Further information:
http://www.ctvr.ie

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>