Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Irish radar detection research project takes off

13.02.2008
• CTVR aims to commercialise new ‘see through the wall’ technology
• UWB radar systems to potentially be applied in medical & security sectors

The Centre for Telecommunications Value-Chain Research (CTVR) today announced that a research project into ultra-wideband (UWB) radar detection systems being carried by a team at the Dublin Institute of Technology (DIT) has been backed by Enterprise Ireland.

Ultra-wideband precision radar imaging technology - ‘see-through-the-wall’ radar - can be used in a range of different sectors, from locating persons buried underground in emergency situations, to providing accurate data on patients under ongoing medical supervision, to vehicular anti-collision systems.

The team at the DIT’s Antenna & High Frequency Research Group (AHFR), part of the CTVR’s wider research group, has developed new antenna designs that increase the levels of accuracy of UWB radar systems. In turn, improved accuracy of UWB radar will ultimately allow developers to create applications that can be promoted and marketed commercially.

Professor Donal O’Mahony, Director, CTVR, said: “This research work, which has already been the subject of papers published in some of the world's leading scientific journals, is also hugely significant from a commercial point of view. Our goal from the beginning has been to facilitate the efforts of companies in Ireland to unlock the commercial value of this new technology”.

Dr Max Ammann, Senior Lecturer, Electronic & Communications Engineering, DIT, said: “The support from Enterprise Ireland will allow us to move the project forward, so that our research can move beyond the lab and support the commercialisation of UWB radar systems. At DIT, we have built a strong track record in helping to bring new technologies to the market place, and this is just the latest stage in that process”.

The UWB technology that is being developed may also have extensive application in the communications arena, in terms of allowing laptops to connect wirelessly to office networks, delivering wireless connections between consumer electronics devices or facilitating data streaming from a camcorder to the hard drive of a PC.

The AHFR team at DIT has carried out extensive research in the application of UWB technology for communications purposes. Last year, the team developed new antenna designs to allow for high speed links between communication devices.

In addition, vehicular or automotive radar systems are currently being promoted as another possible use for UWB technology. These systems can potentially be used to improve automotive safety through collision avoidance systems, safer use of airbags, restraint system arming, and parking assistance.

The use of UWB technology in communications systems evolved during the 1980s to meet the needs of US government agencies, especially for communications systems with low intercept and detection probability. Today, interest in UWB devices extends to civilian use.

Penny Storey | alfa
Further information:
http://www.ctvr.ie

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>