Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Irish radar detection research project takes off

13.02.2008
• CTVR aims to commercialise new ‘see through the wall’ technology
• UWB radar systems to potentially be applied in medical & security sectors

The Centre for Telecommunications Value-Chain Research (CTVR) today announced that a research project into ultra-wideband (UWB) radar detection systems being carried by a team at the Dublin Institute of Technology (DIT) has been backed by Enterprise Ireland.

Ultra-wideband precision radar imaging technology - ‘see-through-the-wall’ radar - can be used in a range of different sectors, from locating persons buried underground in emergency situations, to providing accurate data on patients under ongoing medical supervision, to vehicular anti-collision systems.

The team at the DIT’s Antenna & High Frequency Research Group (AHFR), part of the CTVR’s wider research group, has developed new antenna designs that increase the levels of accuracy of UWB radar systems. In turn, improved accuracy of UWB radar will ultimately allow developers to create applications that can be promoted and marketed commercially.

Professor Donal O’Mahony, Director, CTVR, said: “This research work, which has already been the subject of papers published in some of the world's leading scientific journals, is also hugely significant from a commercial point of view. Our goal from the beginning has been to facilitate the efforts of companies in Ireland to unlock the commercial value of this new technology”.

Dr Max Ammann, Senior Lecturer, Electronic & Communications Engineering, DIT, said: “The support from Enterprise Ireland will allow us to move the project forward, so that our research can move beyond the lab and support the commercialisation of UWB radar systems. At DIT, we have built a strong track record in helping to bring new technologies to the market place, and this is just the latest stage in that process”.

The UWB technology that is being developed may also have extensive application in the communications arena, in terms of allowing laptops to connect wirelessly to office networks, delivering wireless connections between consumer electronics devices or facilitating data streaming from a camcorder to the hard drive of a PC.

The AHFR team at DIT has carried out extensive research in the application of UWB technology for communications purposes. Last year, the team developed new antenna designs to allow for high speed links between communication devices.

In addition, vehicular or automotive radar systems are currently being promoted as another possible use for UWB technology. These systems can potentially be used to improve automotive safety through collision avoidance systems, safer use of airbags, restraint system arming, and parking assistance.

The use of UWB technology in communications systems evolved during the 1980s to meet the needs of US government agencies, especially for communications systems with low intercept and detection probability. Today, interest in UWB devices extends to civilian use.

Penny Storey | alfa
Further information:
http://www.ctvr.ie

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>