Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving digital photos with particle swarms

01.02.2008
A new approach to cleaning up digital photos and other images has been developed by researchers in the UK and Jordan. The research, published recently in Inderscience's International Journal of Innovative Computing and Applications uses a computer algorithm known as a PSO (Particle Swarm Optimization) to intelligently boost contrast and detail in an image without distorting the underlying features.

Malik Braik and Alaa Sheta of the Department of Information Technology, at Al-Balqa Applied University, in Salt, Jordan, working with Aladdin Ayesh in the Division of Computer Engineering, at De Montfort University, Leicester, UK, explain that the Particle Swarm Optimisation (PSO) algorithm represents an entirely new approach to solving all kinds of optimisation problems. PSO has recently been used in computer science and electrical engineering.

The roots of the PSO algorithms lie in Swarm Intelligence paradigm which is inspired by models of living systems, artificial life (A-life) in general, and by theories of how and why birds flock, why schools of fish behave the way they do and in particular what controls swarming insects. Despite its potential it relies on only simple mathematics and does not need powerful computers to run, which means software applications based on PSO would not be limited only to academic researchers and those with access to supercomputers.

There have been several approaches to image enhancement developed by image manipulation software companies and others. However, none comes up to the standards of the kind of image enhancement often seen in fiction, where a blurry distorted image on a screen is rendered pin-sharp at the click of a mouse. PSO, however, takes image enhancement a step closer to this ideal.

PSO is based on a mathematical model of the social interactions of swarms. The algorithm treats each version of an image as an individual member of the swarm and makes a single, small adjustment to contrast levels, edge sharpness, and other image parameters. The algorithm then determines whether the new members of the swarm are better or worse than the original according to an objective fitness criterion.

"The objective of the algorithm is to maximise the total number of pixels in the edges, thus being able to visualise more details in the images," explain the researchers. Such enhancement might be useful in improving snapshots of CCTV quality for identification of individuals or vehicle number plates, it might also have application in improving images produced with lower quality cameras, such as camera phones, that are required for use in publishing or TV where image quality standards are usually higher.

The process of enhancing step by step is repeated to create a swarm of images in computer memory which have been graded relative to each other, the fittest end up at the front of the swarm until a single individual that is the most effectively enhanced.

"The obtained results using grey scale images indicate that PSO is better than other approaches in terms of the computational time and both the objective evaluation and maximisation of the number of pixels in the edges of the tested images," they add.

Albert Ang | alfa
Further information:
http://www.inderscience.com/search/index.php?action=record&rec_id=16795

More articles from Communications Media:

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>