Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving digital photos with particle swarms

01.02.2008
A new approach to cleaning up digital photos and other images has been developed by researchers in the UK and Jordan. The research, published recently in Inderscience's International Journal of Innovative Computing and Applications uses a computer algorithm known as a PSO (Particle Swarm Optimization) to intelligently boost contrast and detail in an image without distorting the underlying features.

Malik Braik and Alaa Sheta of the Department of Information Technology, at Al-Balqa Applied University, in Salt, Jordan, working with Aladdin Ayesh in the Division of Computer Engineering, at De Montfort University, Leicester, UK, explain that the Particle Swarm Optimisation (PSO) algorithm represents an entirely new approach to solving all kinds of optimisation problems. PSO has recently been used in computer science and electrical engineering.

The roots of the PSO algorithms lie in Swarm Intelligence paradigm which is inspired by models of living systems, artificial life (A-life) in general, and by theories of how and why birds flock, why schools of fish behave the way they do and in particular what controls swarming insects. Despite its potential it relies on only simple mathematics and does not need powerful computers to run, which means software applications based on PSO would not be limited only to academic researchers and those with access to supercomputers.

There have been several approaches to image enhancement developed by image manipulation software companies and others. However, none comes up to the standards of the kind of image enhancement often seen in fiction, where a blurry distorted image on a screen is rendered pin-sharp at the click of a mouse. PSO, however, takes image enhancement a step closer to this ideal.

PSO is based on a mathematical model of the social interactions of swarms. The algorithm treats each version of an image as an individual member of the swarm and makes a single, small adjustment to contrast levels, edge sharpness, and other image parameters. The algorithm then determines whether the new members of the swarm are better or worse than the original according to an objective fitness criterion.

"The objective of the algorithm is to maximise the total number of pixels in the edges, thus being able to visualise more details in the images," explain the researchers. Such enhancement might be useful in improving snapshots of CCTV quality for identification of individuals or vehicle number plates, it might also have application in improving images produced with lower quality cameras, such as camera phones, that are required for use in publishing or TV where image quality standards are usually higher.

The process of enhancing step by step is repeated to create a swarm of images in computer memory which have been graded relative to each other, the fittest end up at the front of the swarm until a single individual that is the most effectively enhanced.

"The obtained results using grey scale images indicate that PSO is better than other approaches in terms of the computational time and both the objective evaluation and maximisation of the number of pixels in the edges of the tested images," they add.

Albert Ang | alfa
Further information:
http://www.inderscience.com/search/index.php?action=record&rec_id=16795

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>