Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving digital photos with particle swarms

01.02.2008
A new approach to cleaning up digital photos and other images has been developed by researchers in the UK and Jordan. The research, published recently in Inderscience's International Journal of Innovative Computing and Applications uses a computer algorithm known as a PSO (Particle Swarm Optimization) to intelligently boost contrast and detail in an image without distorting the underlying features.

Malik Braik and Alaa Sheta of the Department of Information Technology, at Al-Balqa Applied University, in Salt, Jordan, working with Aladdin Ayesh in the Division of Computer Engineering, at De Montfort University, Leicester, UK, explain that the Particle Swarm Optimisation (PSO) algorithm represents an entirely new approach to solving all kinds of optimisation problems. PSO has recently been used in computer science and electrical engineering.

The roots of the PSO algorithms lie in Swarm Intelligence paradigm which is inspired by models of living systems, artificial life (A-life) in general, and by theories of how and why birds flock, why schools of fish behave the way they do and in particular what controls swarming insects. Despite its potential it relies on only simple mathematics and does not need powerful computers to run, which means software applications based on PSO would not be limited only to academic researchers and those with access to supercomputers.

There have been several approaches to image enhancement developed by image manipulation software companies and others. However, none comes up to the standards of the kind of image enhancement often seen in fiction, where a blurry distorted image on a screen is rendered pin-sharp at the click of a mouse. PSO, however, takes image enhancement a step closer to this ideal.

PSO is based on a mathematical model of the social interactions of swarms. The algorithm treats each version of an image as an individual member of the swarm and makes a single, small adjustment to contrast levels, edge sharpness, and other image parameters. The algorithm then determines whether the new members of the swarm are better or worse than the original according to an objective fitness criterion.

"The objective of the algorithm is to maximise the total number of pixels in the edges, thus being able to visualise more details in the images," explain the researchers. Such enhancement might be useful in improving snapshots of CCTV quality for identification of individuals or vehicle number plates, it might also have application in improving images produced with lower quality cameras, such as camera phones, that are required for use in publishing or TV where image quality standards are usually higher.

The process of enhancing step by step is repeated to create a swarm of images in computer memory which have been graded relative to each other, the fittest end up at the front of the swarm until a single individual that is the most effectively enhanced.

"The obtained results using grey scale images indicate that PSO is better than other approaches in terms of the computational time and both the objective evaluation and maximisation of the number of pixels in the edges of the tested images," they add.

Albert Ang | alfa
Further information:
http://www.inderscience.com/search/index.php?action=record&rec_id=16795

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>