Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving digital photos with particle swarms

01.02.2008
A new approach to cleaning up digital photos and other images has been developed by researchers in the UK and Jordan. The research, published recently in Inderscience's International Journal of Innovative Computing and Applications uses a computer algorithm known as a PSO (Particle Swarm Optimization) to intelligently boost contrast and detail in an image without distorting the underlying features.

Malik Braik and Alaa Sheta of the Department of Information Technology, at Al-Balqa Applied University, in Salt, Jordan, working with Aladdin Ayesh in the Division of Computer Engineering, at De Montfort University, Leicester, UK, explain that the Particle Swarm Optimisation (PSO) algorithm represents an entirely new approach to solving all kinds of optimisation problems. PSO has recently been used in computer science and electrical engineering.

The roots of the PSO algorithms lie in Swarm Intelligence paradigm which is inspired by models of living systems, artificial life (A-life) in general, and by theories of how and why birds flock, why schools of fish behave the way they do and in particular what controls swarming insects. Despite its potential it relies on only simple mathematics and does not need powerful computers to run, which means software applications based on PSO would not be limited only to academic researchers and those with access to supercomputers.

There have been several approaches to image enhancement developed by image manipulation software companies and others. However, none comes up to the standards of the kind of image enhancement often seen in fiction, where a blurry distorted image on a screen is rendered pin-sharp at the click of a mouse. PSO, however, takes image enhancement a step closer to this ideal.

PSO is based on a mathematical model of the social interactions of swarms. The algorithm treats each version of an image as an individual member of the swarm and makes a single, small adjustment to contrast levels, edge sharpness, and other image parameters. The algorithm then determines whether the new members of the swarm are better or worse than the original according to an objective fitness criterion.

"The objective of the algorithm is to maximise the total number of pixels in the edges, thus being able to visualise more details in the images," explain the researchers. Such enhancement might be useful in improving snapshots of CCTV quality for identification of individuals or vehicle number plates, it might also have application in improving images produced with lower quality cameras, such as camera phones, that are required for use in publishing or TV where image quality standards are usually higher.

The process of enhancing step by step is repeated to create a swarm of images in computer memory which have been graded relative to each other, the fittest end up at the front of the swarm until a single individual that is the most effectively enhanced.

"The obtained results using grey scale images indicate that PSO is better than other approaches in terms of the computational time and both the objective evaluation and maximisation of the number of pixels in the edges of the tested images," they add.

Albert Ang | alfa
Further information:
http://www.inderscience.com/search/index.php?action=record&rec_id=16795

More articles from Communications Media:

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>