Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST helps beam time to TV viewers in the Middle East

14.12.2007
Millions of satellite television and radio users in North Africa and the Middle East can now see and hear the precise time of day, thanks to technical assistance and a custom-built time signal generator from the National Institute of Standards and Technology (NIST).

The new system, which began broadcasting time data and audio reports this year,* is the most widely available source of atomic time in the region. Previously, smaller numbers of users have had access to an automated computer time service (also designed by NIST) and the Global Positioning System, a military satellite service that provides time signals to civilian users with GPS receivers. Now, users of commercially available satellite dishes and receivers can get atomic time by decoding a standard time code format or listening to the audio broadcast.

NIST provided assistance to the National Institute for Standards in Egypt, which negotiated for a special channel for the new service from the Egyptian Satellite Company (NILESAT). NIST built the time code generator, about the size of a briefcase, which produces two signals, a standard time code and an audible seconds pulse and top-of-the-minute voice announcement in Arabic. The time code includes Daylight Saving Time corrections as well as leap year and leap second warnings. NIST and Egyptian standards officials recorded the voices (“At the sound of the tone, the time will be [hour and minute] Egyptian Local Time.”).

The NIST device, installed at a satellite uplink facility in 6th of October City, Egypt, synchronizes its reports with a cesium atomic clock at the same location that is itself synchronized with Coordinated Universal Time to provide traceability to international time standards. According to John Lowe of NIST, Egyptian officials also plan to use the new service to mount time displays in public places. The project was funded by a grant from the U.S.-Egypt Joint Science and Technology Program.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Communications Media:

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

nachricht NASA Goddard network maintains communications from space to ground
02.03.2016 | NASA/Goddard Space Flight Center

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>