Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL launches TacSat-4 to augment communications needs

28.09.2011
The Navy's Tactical Satellite-IV (TacSat-4) successfully launched Sept. 27 aboard an Orbital Sciences Minotaur-IV+ launch vehicle from Alaska Aerospace Corporation's (AAC) Kodiak Launch Complex, Kodiak Island, Alaska.

The spacecraft augments current geosynchronous satellite communications, having an apogee of 12,050 kilometers in the high latitudes to deliver near, although not continuous, global communications on-the-move (COTM) to the battlefield and provide access to mountainous regions that have previously proved problematic.


A less expensive, small-sat class system satellite with newer and more flexible technologies, TacSat-4's highly elliptical orbit augments existing geosynchronous satellites by providing near continuous communications to forward deployed forces in the high latitudes. Credit: US Naval Research Laboratory

TacSat-4 is a Navy-led joint mission that provides 10 Ultra High Frequency (UHF) channels and allows forward deployed troops to communicate from obscured regions using existing hand-held radios without the need to stop and point an antenna towards the satellite.

"TacSat-4 supports a critical warfighting requirement: communication," said Chief of Naval Research Rear Adm. Nevin Carr. "We've developed a technology that will supplement traditional satellites, giving military personnel on the ground another outlet for data transmission and facilitating 'comms on the move,'"

TacSat-4 provides flexible up and down channel assignments, which increase the ability to operate in busy radio-frequency environments and will cover the high latitudes and mountainous areas where users currently cannot access UHF satellite communications (SATCOMs). The NRL Blossom Point Ground Station provides the command and control for TacSat-4 and maintains its user Virtual Mission Operations Center (VMOC) tasking system, allowing dynamic reallocation to different theaters worldwide and enabling rapid SATCOM augmentation when unexpected operations or natural events occur.

TacSat-4 is an experimental spacecraft that will test advances in several technologies and SATCOM techniques. It will augment the existing fleet by giving the SATCOM Support Centers (SSC) an additional space asset to provide communications to otherwise under-served users and areas that either do not have high enough priority or do not have satellite visibility. The project will potentially provide the option for launching smaller highly elliptical orbit (HEO) satellites and enabling 24-hour coverage in multiple regions simultaneously, allowing the military to achieve the benefits of a combined HEO and geosynchronous orbit constellation.

The spacecraft bus was built by NRL and Johns Hopkins University Applied Physics Laboratory (APL) to mature ORS bus standards. It was developed by an Integrated (government and industry) System Engineering Team, the "ISET Team," with active representation from AeroAstro, Air Force Research Laboratory, Johns Hopkins Laboratory APL, ATK Space, Ball Aerospace and Technologies, Boeing, Design Net Engineering, General Dynamics AIS, Microcosm, Microsat Systems Inc., Massachusetts Institute of Technology Lincoln Laboratory, Orbital Sciences, NRL, SMC, Space System Loral, and Raytheon.

The Office of Naval Research (ONR) sponsored the development of the payload and funded the first year of operations. The Office of the Director of Defense Research and Engineering (DDR&E) funded the standardized spacecraft bus. The Operationally Responsive Space (ORS) Office funded the launch that will be performed by the Air Force Space and Missile Systems Center (SMC).

TacSat-4 is managed by the Naval Research Laboratory, Naval Center for Space Technology and marks NRL's 100th satellite.

Daniel Parry | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Communications Media:

nachricht Between filter bubbles, uneven visibility and transnationality
06.12.2017 | Schweizerischer Nationalfonds SNF

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>