Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL launches TacSat-4 to augment communications needs

28.09.2011
The Navy's Tactical Satellite-IV (TacSat-4) successfully launched Sept. 27 aboard an Orbital Sciences Minotaur-IV+ launch vehicle from Alaska Aerospace Corporation's (AAC) Kodiak Launch Complex, Kodiak Island, Alaska.

The spacecraft augments current geosynchronous satellite communications, having an apogee of 12,050 kilometers in the high latitudes to deliver near, although not continuous, global communications on-the-move (COTM) to the battlefield and provide access to mountainous regions that have previously proved problematic.


A less expensive, small-sat class system satellite with newer and more flexible technologies, TacSat-4's highly elliptical orbit augments existing geosynchronous satellites by providing near continuous communications to forward deployed forces in the high latitudes. Credit: US Naval Research Laboratory

TacSat-4 is a Navy-led joint mission that provides 10 Ultra High Frequency (UHF) channels and allows forward deployed troops to communicate from obscured regions using existing hand-held radios without the need to stop and point an antenna towards the satellite.

"TacSat-4 supports a critical warfighting requirement: communication," said Chief of Naval Research Rear Adm. Nevin Carr. "We've developed a technology that will supplement traditional satellites, giving military personnel on the ground another outlet for data transmission and facilitating 'comms on the move,'"

TacSat-4 provides flexible up and down channel assignments, which increase the ability to operate in busy radio-frequency environments and will cover the high latitudes and mountainous areas where users currently cannot access UHF satellite communications (SATCOMs). The NRL Blossom Point Ground Station provides the command and control for TacSat-4 and maintains its user Virtual Mission Operations Center (VMOC) tasking system, allowing dynamic reallocation to different theaters worldwide and enabling rapid SATCOM augmentation when unexpected operations or natural events occur.

TacSat-4 is an experimental spacecraft that will test advances in several technologies and SATCOM techniques. It will augment the existing fleet by giving the SATCOM Support Centers (SSC) an additional space asset to provide communications to otherwise under-served users and areas that either do not have high enough priority or do not have satellite visibility. The project will potentially provide the option for launching smaller highly elliptical orbit (HEO) satellites and enabling 24-hour coverage in multiple regions simultaneously, allowing the military to achieve the benefits of a combined HEO and geosynchronous orbit constellation.

The spacecraft bus was built by NRL and Johns Hopkins University Applied Physics Laboratory (APL) to mature ORS bus standards. It was developed by an Integrated (government and industry) System Engineering Team, the "ISET Team," with active representation from AeroAstro, Air Force Research Laboratory, Johns Hopkins Laboratory APL, ATK Space, Ball Aerospace and Technologies, Boeing, Design Net Engineering, General Dynamics AIS, Microcosm, Microsat Systems Inc., Massachusetts Institute of Technology Lincoln Laboratory, Orbital Sciences, NRL, SMC, Space System Loral, and Raytheon.

The Office of Naval Research (ONR) sponsored the development of the payload and funded the first year of operations. The Office of the Director of Defense Research and Engineering (DDR&E) funded the standardized spacecraft bus. The Operationally Responsive Space (ORS) Office funded the launch that will be performed by the Air Force Space and Missile Systems Center (SMC).

TacSat-4 is managed by the Naval Research Laboratory, Naval Center for Space Technology and marks NRL's 100th satellite.

Daniel Parry | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Communications Media:

nachricht High Number of Science Enthusiasts in Switzerland
05.02.2018 | Universität Zürich

nachricht Between filter bubbles, uneven visibility and transnationality
06.12.2017 | Schweizerischer Nationalfonds SNF

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>