Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No room for wrong notes

05.03.2014

As the examiner rewinds once again, one question remains: has the refrain of the song been plagiarized? Eyes narrowed, the music expert presses the start button once more and focuses on the melody and notes with the utmost atten-tion. Finally, no doubt remains: the alleged composer has copied not only the melody but whole chunks of the original song as well.

“Here, this sort of event is greeted by silence,” says Christian Dittmar from the
Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau. The software he has developed automatically detects plagiarized music and expunges the stolen parts of the song:


A look at how an editorial department might operate in the future – thanks to Fraunhofer software, journalists can verify the authenticity of an audio recording in a matter of seconds.

Fraunhofer IDMT

“In the most extreme cases, involving particularly brazen theft, there isn’t a single note left in the piece.” Fraunhofer IDMT’s “PlagiarismAnalyzer“ detects identical melodies and samples (whole portions of a song) in a matter of seconds. To do this, mathematical algorithms identify the tonal spectrum of the copy and the original and then compare the two. 

Software detects manipulated audio material 

Two audio recordings display their characteristic wave shape on the computer screen in front of Patrick Aichroth. An optical signal points to suspect points within the material. Dittmar’s colleague is also on the hunt for manipulated recordings. However, he is not just concerned with music but with audio files in general – including passages of speech recorded on smartphones. He and his team use a variety of techniques to detect manipulation, from electrical network frequency (ENF) analysis to microphone categori-zation and the inverse decoder.

“Editing processes such as cutting, encoding or decoding leave behind traces in the
audio file. These can be detected through an altered ENF, a change in the microphone
used or via the inverse decoder,” explains Aichroth. Fraunhofer IDMT developed the
inverse decoder on the basis of research findings from the Fraunhofer Institute for
Integrated Circuits IIS in Erlangen. The decoder shows which format and which para-meters were used to encode the original file – for instance the mp3 format, which
compresses the audio track.

It’s not just those examining cases of plagiarism that will be able to benefit from the
new technologies developed in Ilmenau. Editors, detectives and archivists are sure to
find it useful too as the flood of audio content on the internet and within companies
continues to rise. “These days, you don’t have to be an audio technician to make a
recording. Smartphones have become so widespread that audio recordings often exist
which might provide substantiating information on important events. As the amount of
audio content continues to rise, so too does the danger of manipulation – and there is
hardly ever time to check the recording manually,” says Aichroth.

To illustrate his point he cites two situations where automatically checking audio
material could prove extremely useful. The first involves an editorial team at a German
publication. Just before they are about to go to print, the journalists get hold of some
controversial audio material that would put a completely new spin on the title story.
The decisive question is whether the recordings are genuine.

Or imagine the following scene: the police possess several mobile phone recordings that heavily implicate the main suspect. Here too the officers need a speedy initial as-sessment of whether the recordings are genuine or whether they have been manipula-ted.

Fraunhofer’s scientists in Ilmenau developed their software as part of the EU-sponsored
REWIND project (http://www.rewindproject.eu). In this project Fraunhofer IDMT is
working alongside universities in Brazil, Italy, Spain and the UK. “We want to under-stand the basic theoretical principles and also to develop technologies from which
practical tools evolve. We are bringing together the strengths of all the technology
developed to date so that we can offer a quick analysis even for larger volumes of
data,” says Dittmar. It currently takes around 5 seconds to detect a 10-second original
sequence within a 30-second piece of music.

REWIND will be ending in April 2014. Shortly prior to this, from 10-14 March, 2014,
Fraunhofer IDMT will be showcasing results from the project at CeBIT in Hannover at
the Fraunhofer-Gesellschaft stand (Hall 9, Booth E40). Visitors to the stand will be able
to see for themselves how easily an audio file can be manipulated, how hard it is to tell
the difference by ear alone and how the tools developed in Ilmenau work in practice.

Weitere Informationen:

http://s.fhg.de/dU8

Julia Hallebach | Fraunhofer-Institut

Further reports about: IDMT Smartphones mathematical plagiarism processes rise spectrum technologies

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>