Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Network of Everything

17.11.2008
Wireless experts believe that, by 2017, personal networks will have to cope with at least a thousand devices, like laptops, telephones, mp3 players, games, sensors and other technology. To link these devices will require a ‘Network of Everything’. It represents an astonishing challenge, but European researchers believe that they are moving towards the solution.

European researchers have just completed work on a networking project to perfect what will become known, perhaps, as the Smart Personal Network. Personal Networks, or PNs, are seen as essential for a world where many different devices must work in sync together, known as 4G (fourth generation). It will mean personalised services, low power devices with cheap, ubiquitous and broadband connectivity.

The EU-funded MAGNET Beyond project tackled all the issues surrounding PNs. MAGNET stands for ‘My personal Adaptive Global NET’ and the project further developed the concept of Personal Area Networks (PANs), first introduced in earlier PN projects PACWOMAN and MAGNET.

While the PANs link together all the devices and technology within a person’s reach, the PNs spread the networking domain transparently towards the personal devices reachable via different network infrastructures. A PN belongs to and serves a private entity, a person, a fire fighter, or eventually a car, an aeroplane.

In the future, there will be hundreds, even as many as a thousand devices in a PN. It may seem an impossible figure, but in the near future the number of personal devices will multiply enormously. One person might have dozens of sensors, monitoring vital signs like heart rate and temperature, and even the electrolytes present in perspiration. And then there are sensors and actuators in the home, including light switches, and more again in cars.

People will be able to link with TVs, stoves and spectacles, which could double as a personal TV screen, and even clothing. They will have a home gateway, to manage all their home devices, and a car gateway while driving.

A person may access remotely personal files from almost anywhere in the world as if he or she were at the office. People will be able to include others in their PN and exchange personal information, or patch into a presentation in another conference room and watch it remotely. Many of these technologies already exist, but over time, they will become more widespread and connected.

In reality, it is hard to know what kind of devices or technology might be around for sure, but one thing is certain… there will be a lot of them. Hence the World Wireless Research Forum’s (WWRF) prediction of 7 trillion devices for 7 billion people by 2017 – in other words, around a thousand devices for every man, woman and child on the planet.

“In the industry, 2017 is like slang for a future where there will be many, many more devices that people use in their day-to-day life,” explains Professor Liljana Gavrilovska, Technical Manager of the MAGNET Beyond project. “This project prepares for that future.”

Crossed-fingers

Right now, PNs usually involve fiddling around with Bluetooth settings and crossing your fingers. If it does work, users typically try to complete simple tasks by trial and error, like hunting for photos on your mobile or trying to transfer a tune from your computer to a PDA.

But in the MAGNET model, users are able to easily set up their Personal Networks with all their devices.

“We have a user-centric approach,” reveals Gavrilovska, “with the overall objective to design, develop, demonstrate and validate the concept of a flexible PN that supports resource-efficient, robust, ubiquitous personal services in a secure, heterogeneous networking environment for mobile users.”

In the MAGNET Beyond vision, the devices will be self-organising and will be able to form geographically distributed secure networks of personal devices. This vision includes a platform for a multitude of personal applications and services to support private and professional activities in an unobtrusive, but dependable and trustworthy way.

United federation of PNs

Better yet, these networks will be able to ‘federate’ with other PNs on a permanent or ad-hoc basis. Users will be able to link their PNs permanently with those of their friends and family, or temporarily with other people and companies depending on some purpose or joint interest (see photo 2). Users will be able to control precisely what devices and information other people can link with.

Four fundamental principles guided the consortium’s work: ease of use, trustworthiness, ubiquity and low cost.

“For example, the system is designed to be user friendly, with little or no training required and no need for system administrators,” Gavrilovska explains. “It will ensure security and protect privacy, and it will work everywhere, even without any additional infrastructure, but still be able to exploit any available resources, like wifi or cellphone networks, for example."

The key elements to achieving these goals were personalisation and a tailored security, privacy and trust framework, including identity and the management of credentials. Credentials establish the trustworthiness of services outside the PN.

Future-proof

“We also designed it to be a future-proof architecture, to be self-organising, self-managing and aware of the context,” Gavrilovska notes. The consortium even developed new hardware prototypes with optimised air interfaces, to ensure the MAGNET Beyond platform worked efficiently.

It was an enormous challenge, but MAGNET Beyond enjoys substantial resources, too. The consortium includes 35 companies from 16 countries on two continents. It has a budget of over €16m, with €10.3m from the EU – and that is just phase two.

Phase one, called simply MAGNET, had 32 partners in 17 countries on three continents with a budget of €17.4m (€10m from the EU).

Both phases featured many of the world’s leading corporations and research institutes, like Nokia, NEC, Alcatel-Lucent, Samsung, TeliaSonera, Telefonica, CEA LETI, VTT, CSEM, France telecom, Telefonica, Fraunhofer FOKUS, Delft University of Technology, NICT, University of Surrey, Rome and Kassel, Aalborg, GET-INT, and many others.

The effort was worth it, with a vast range of innovative technologies now delivering Smart Personal Networks. Personal Networks that can be easily integrated into the future generations of wireless networks, and co-operate in the unfolding Future Internet and Internet of Things.

The MAGNET Beyond project received funding from the ICT strand of the Sixth Framework Programme for research. This is part one of a three-part feature on MAGNET Beyond.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90199

More articles from Communications Media:

nachricht High Number of Science Enthusiasts in Switzerland
05.02.2018 | Universität Zürich

nachricht Between filter bubbles, uneven visibility and transnationality
06.12.2017 | Schweizerischer Nationalfonds SNF

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>