Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Network of Everything

17.11.2008
Wireless experts believe that, by 2017, personal networks will have to cope with at least a thousand devices, like laptops, telephones, mp3 players, games, sensors and other technology. To link these devices will require a ‘Network of Everything’. It represents an astonishing challenge, but European researchers believe that they are moving towards the solution.

European researchers have just completed work on a networking project to perfect what will become known, perhaps, as the Smart Personal Network. Personal Networks, or PNs, are seen as essential for a world where many different devices must work in sync together, known as 4G (fourth generation). It will mean personalised services, low power devices with cheap, ubiquitous and broadband connectivity.

The EU-funded MAGNET Beyond project tackled all the issues surrounding PNs. MAGNET stands for ‘My personal Adaptive Global NET’ and the project further developed the concept of Personal Area Networks (PANs), first introduced in earlier PN projects PACWOMAN and MAGNET.

While the PANs link together all the devices and technology within a person’s reach, the PNs spread the networking domain transparently towards the personal devices reachable via different network infrastructures. A PN belongs to and serves a private entity, a person, a fire fighter, or eventually a car, an aeroplane.

In the future, there will be hundreds, even as many as a thousand devices in a PN. It may seem an impossible figure, but in the near future the number of personal devices will multiply enormously. One person might have dozens of sensors, monitoring vital signs like heart rate and temperature, and even the electrolytes present in perspiration. And then there are sensors and actuators in the home, including light switches, and more again in cars.

People will be able to link with TVs, stoves and spectacles, which could double as a personal TV screen, and even clothing. They will have a home gateway, to manage all their home devices, and a car gateway while driving.

A person may access remotely personal files from almost anywhere in the world as if he or she were at the office. People will be able to include others in their PN and exchange personal information, or patch into a presentation in another conference room and watch it remotely. Many of these technologies already exist, but over time, they will become more widespread and connected.

In reality, it is hard to know what kind of devices or technology might be around for sure, but one thing is certain… there will be a lot of them. Hence the World Wireless Research Forum’s (WWRF) prediction of 7 trillion devices for 7 billion people by 2017 – in other words, around a thousand devices for every man, woman and child on the planet.

“In the industry, 2017 is like slang for a future where there will be many, many more devices that people use in their day-to-day life,” explains Professor Liljana Gavrilovska, Technical Manager of the MAGNET Beyond project. “This project prepares for that future.”

Crossed-fingers

Right now, PNs usually involve fiddling around with Bluetooth settings and crossing your fingers. If it does work, users typically try to complete simple tasks by trial and error, like hunting for photos on your mobile or trying to transfer a tune from your computer to a PDA.

But in the MAGNET model, users are able to easily set up their Personal Networks with all their devices.

“We have a user-centric approach,” reveals Gavrilovska, “with the overall objective to design, develop, demonstrate and validate the concept of a flexible PN that supports resource-efficient, robust, ubiquitous personal services in a secure, heterogeneous networking environment for mobile users.”

In the MAGNET Beyond vision, the devices will be self-organising and will be able to form geographically distributed secure networks of personal devices. This vision includes a platform for a multitude of personal applications and services to support private and professional activities in an unobtrusive, but dependable and trustworthy way.

United federation of PNs

Better yet, these networks will be able to ‘federate’ with other PNs on a permanent or ad-hoc basis. Users will be able to link their PNs permanently with those of their friends and family, or temporarily with other people and companies depending on some purpose or joint interest (see photo 2). Users will be able to control precisely what devices and information other people can link with.

Four fundamental principles guided the consortium’s work: ease of use, trustworthiness, ubiquity and low cost.

“For example, the system is designed to be user friendly, with little or no training required and no need for system administrators,” Gavrilovska explains. “It will ensure security and protect privacy, and it will work everywhere, even without any additional infrastructure, but still be able to exploit any available resources, like wifi or cellphone networks, for example."

The key elements to achieving these goals were personalisation and a tailored security, privacy and trust framework, including identity and the management of credentials. Credentials establish the trustworthiness of services outside the PN.

Future-proof

“We also designed it to be a future-proof architecture, to be self-organising, self-managing and aware of the context,” Gavrilovska notes. The consortium even developed new hardware prototypes with optimised air interfaces, to ensure the MAGNET Beyond platform worked efficiently.

It was an enormous challenge, but MAGNET Beyond enjoys substantial resources, too. The consortium includes 35 companies from 16 countries on two continents. It has a budget of over €16m, with €10.3m from the EU – and that is just phase two.

Phase one, called simply MAGNET, had 32 partners in 17 countries on three continents with a budget of €17.4m (€10m from the EU).

Both phases featured many of the world’s leading corporations and research institutes, like Nokia, NEC, Alcatel-Lucent, Samsung, TeliaSonera, Telefonica, CEA LETI, VTT, CSEM, France telecom, Telefonica, Fraunhofer FOKUS, Delft University of Technology, NICT, University of Surrey, Rome and Kassel, Aalborg, GET-INT, and many others.

The effort was worth it, with a vast range of innovative technologies now delivering Smart Personal Networks. Personal Networks that can be easily integrated into the future generations of wireless networks, and co-operate in the unfolding Future Internet and Internet of Things.

The MAGNET Beyond project received funding from the ICT strand of the Sixth Framework Programme for research. This is part one of a three-part feature on MAGNET Beyond.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90199

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>