Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method to facilitate extraction

18.12.2008
With today's large flows of data-based texts it is important to produce systems that facilitate searches for the particular information that is required.

Information on, for example, events in a company from news texts; who is leaving which post, why, to which company and position the person is moving etc. In his thesis Fredrik Olsson deals with a new method of facilitating the marking up of occurrences of names in data-based textual documents.

Information extraction entails analysing texts with the aim of identifying and picking out information about predefined types of entities, events in which the entities are engaged and relationships between entities and events. In other words it is about gaining access to structured information from an apparently unstructured source of information.

One of the reasons that information extraction is not available for everyone is that it requires a lot of work and time to adapt a system to function for new data in a new text domain. A system that could handle the scenario used as an example above would probably not function at all if the data were changed to identifying interactions between proteins described in biomedical text.

An established way of approaching the problem of domain adaptation of systems for information extraction is to realise its components using machine learning, i.e. computer programs that can learn. In many respects machine learning is based on there being examples from which to learn. A component in an extraction system needs to see examples of the phenomenon it is going to learn to identify, e.g. entities and the relationships between them. The basis of this type of machine learning is thus access to large quantities of examples. However, there are major challenges in producing good examples: it is laborious, takes time and requires a person who knows the domain well to mark up examples in texts.

Recognising names of, for example individuals, companies and locations is fundamental for information extraction. By recognising names we can also start to look for, for example, relationships, expressed in the text, between the bearers of the names.

In his thesis Fredrik Olsson describes the work of developing and evaluating a method, called BootMark, of marking up the occurrence of names in textual documents. BootMark contributes to reducing the quantity of documents that a human annotator needs to mark up in order to train a name recognizer with a performance that is equally good or better than a name recognizer who is trained in a random selection of documents from the same corpus.

Title of the thesis: Bootstrapping Named Entity Annotation by Means of Active Machine Learning. A method for creating corpora.
The thesis will be public defended on Friday 19 December at 1.15 pm
Location: Lilla hörsalen, Humanisten, Renströmsgatan 6
For further information contact Fredrik Olsson, mobile: +46 (0)704 -15 54 10,
e-mail: fredriko@sics.se
Contact person: Barbro Ryder Liljegren Faculty of Arts, University of Gothenburg Tel. +46 (0)31-786 48 65, e-mail: barbro.ryder@hum.gu.se

Eva Lundgren | idw
Further information:
http://www.vr.se

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>