Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With Fraunhofer IDMT’s spatial acoustics simulation, any room can be turned into a concert hall

04.04.2013
Whether it’s in movie theaters or at home, at concerts or at conferences, in clubs or in planetariums – the trend towards 3D audio systems and applications is definitely gaining momentum.

Being among the world’s leading research institutes in the field of spatial acoustics, Fraunhofer IDMT has now added a new feature to its “SpatialSound Wave“ 3D sound system: interactive room simulation technology allows true-to-life sound reproduction in any room.

SpatialSound Wave, the sound and production system developed by Fraunhofer IDMT, allows consistent reproduction of sound objects and acoustic environments, so that the audience can fully immerse themselves in the sound. By empowering SpatialSound Wave to reproduce any room characteristics, Fraunhofer IDMT’s acousticians have created a whole new quality in true-to-life room acoustics simulation.

Interactive spatial acoustics simulation to provide optimal room acoustics

Taking advantage of dynamic room simulation, acoustic characteristics of both virtual and real rooms can be simulated, allowing to achieve excellent 3D sound of music performances and optimal room acoustics. Acoustics produced can be adapted to the requirements and ambient conditions of any event, in order to make for, for example, improved voice sound quality at conferences or optimal sound during concerts. “As we are able to interactively adjust reverberation time, we can manipulate any room acoustics and adapt it to the position and movement of sound sources. For example, when a singer is moving on stage, the audience usually will notice a change in the acoustics they perceice. We are now able to manipulate room acoustics so that any listener, regardless of where they are seated, can enjoy a consistent, true-to-life sound“, says René Rodigast, head of Professional Audio group at Fraunhofer IDMT. “Apart from that, we are able to switch between several simulated rooms in real-time, allowing listeners to get different sound impressions by the push of a button, like, for example, a concert hall, a cathedral, or a football stadium“, Mr Rodigast adds.

Spatial acoustics for multiple purposes

SpatialSound Wave is based on Fraunhofer IDMT’s many years of experience with spatial audio reproduction technology, such as wave field synthesis. SpatialSound Wave comes as a compact spatial sound reproduction system that does not require a closed-loop loudspeaker setup in order to provide great true-to-life sound immersion. The system can be used as a fixed or a mobile installation for conferences, clubs, concerts, events, as well as in planetariums or theme parks.

SpatialSound Wave at Prolight + Sound 2013, Frankfurt

Visitors of the Prolight + Sound trade fair, taking place April 10 – 13 in Frankfurt, are invited to stop by at the booth of Fraunhofer IDMT (Hall 8, E 37) to witness live demos and get to know the latest on interactive room simulation.

Fraunhofer IDMT will also be contributing to the Media Systems Congress at Prolight + Sound, giving a presentation entitled “Speech Reproduction and Concert Acoustics: Spatial Acoustics Simulation in 3D Sound Engineering“, in the course of which attendees will be learning about the technology and what purposes it can be used for.

Speaker: René Rodigast
Date: April 12, 2013, 11 a.m.
Place: Herstellerforum, Media Systems Congress
Media representatives are cordially invited to attend the presentation.
About Fraunhofer IDMT
The Fraunhofer Institute for Digital Media Technology IDMT is doing applied research in the field of audiovisual media. The Institute is known as a competent partner of industry when it comes to developing groundbreaking technologies for the digital media domain. Together with its contracting partners Fraunhofer IDMT develops cutting-edge solutions consistently designed to meet user requirements and expectations. At its headquarters in Ilmenau and its branches in Erfurt and Oldenburg Fraunhofer IDMT employs over one-hundred people working on the Institute’s research portfolio.

Press and Public Relations

Stefanie Miethbauer
Phone +49 3677 467-331
stefanie.miethbauer@idmt.fraunhofer.de

Katrin Pursche | Fraunhofer-Institut
Further information:
http://www.idmt.fraunhofer.de/en/Press_and_Media/2013/pls.html

Further reports about: Acoustics IDMT SpatialSound Wave simulation technology

More articles from Communications Media:

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

nachricht High Number of Science Enthusiasts in Switzerland
05.02.2018 | Universität Zürich

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>