Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With Fraunhofer IDMT’s spatial acoustics simulation, any room can be turned into a concert hall

04.04.2013
Whether it’s in movie theaters or at home, at concerts or at conferences, in clubs or in planetariums – the trend towards 3D audio systems and applications is definitely gaining momentum.

Being among the world’s leading research institutes in the field of spatial acoustics, Fraunhofer IDMT has now added a new feature to its “SpatialSound Wave“ 3D sound system: interactive room simulation technology allows true-to-life sound reproduction in any room.

SpatialSound Wave, the sound and production system developed by Fraunhofer IDMT, allows consistent reproduction of sound objects and acoustic environments, so that the audience can fully immerse themselves in the sound. By empowering SpatialSound Wave to reproduce any room characteristics, Fraunhofer IDMT’s acousticians have created a whole new quality in true-to-life room acoustics simulation.

Interactive spatial acoustics simulation to provide optimal room acoustics

Taking advantage of dynamic room simulation, acoustic characteristics of both virtual and real rooms can be simulated, allowing to achieve excellent 3D sound of music performances and optimal room acoustics. Acoustics produced can be adapted to the requirements and ambient conditions of any event, in order to make for, for example, improved voice sound quality at conferences or optimal sound during concerts. “As we are able to interactively adjust reverberation time, we can manipulate any room acoustics and adapt it to the position and movement of sound sources. For example, when a singer is moving on stage, the audience usually will notice a change in the acoustics they perceice. We are now able to manipulate room acoustics so that any listener, regardless of where they are seated, can enjoy a consistent, true-to-life sound“, says René Rodigast, head of Professional Audio group at Fraunhofer IDMT. “Apart from that, we are able to switch between several simulated rooms in real-time, allowing listeners to get different sound impressions by the push of a button, like, for example, a concert hall, a cathedral, or a football stadium“, Mr Rodigast adds.

Spatial acoustics for multiple purposes

SpatialSound Wave is based on Fraunhofer IDMT’s many years of experience with spatial audio reproduction technology, such as wave field synthesis. SpatialSound Wave comes as a compact spatial sound reproduction system that does not require a closed-loop loudspeaker setup in order to provide great true-to-life sound immersion. The system can be used as a fixed or a mobile installation for conferences, clubs, concerts, events, as well as in planetariums or theme parks.

SpatialSound Wave at Prolight + Sound 2013, Frankfurt

Visitors of the Prolight + Sound trade fair, taking place April 10 – 13 in Frankfurt, are invited to stop by at the booth of Fraunhofer IDMT (Hall 8, E 37) to witness live demos and get to know the latest on interactive room simulation.

Fraunhofer IDMT will also be contributing to the Media Systems Congress at Prolight + Sound, giving a presentation entitled “Speech Reproduction and Concert Acoustics: Spatial Acoustics Simulation in 3D Sound Engineering“, in the course of which attendees will be learning about the technology and what purposes it can be used for.

Speaker: René Rodigast
Date: April 12, 2013, 11 a.m.
Place: Herstellerforum, Media Systems Congress
Media representatives are cordially invited to attend the presentation.
About Fraunhofer IDMT
The Fraunhofer Institute for Digital Media Technology IDMT is doing applied research in the field of audiovisual media. The Institute is known as a competent partner of industry when it comes to developing groundbreaking technologies for the digital media domain. Together with its contracting partners Fraunhofer IDMT develops cutting-edge solutions consistently designed to meet user requirements and expectations. At its headquarters in Ilmenau and its branches in Erfurt and Oldenburg Fraunhofer IDMT employs over one-hundred people working on the Institute’s research portfolio.

Press and Public Relations

Stefanie Miethbauer
Phone +49 3677 467-331
stefanie.miethbauer@idmt.fraunhofer.de

Katrin Pursche | Fraunhofer-Institut
Further information:
http://www.idmt.fraunhofer.de/en/Press_and_Media/2013/pls.html

Further reports about: Acoustics IDMT SpatialSound Wave simulation technology

More articles from Communications Media:

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>