Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Communication is Key for Responsible Research and Innovation

10.07.2015

Major Horizon 2020 project “NUCLEUS” investigates governance and cultures in scientific institutions to foster the science-society dialogue / 24 project partners from Europe, Asia and Africa

How should science respond to the needs of the people? How could a socially robust and responsible communication foster a genuine dialogue between, let’s say a university and its stakeholders—whether politicians and entrepreneurs, artists and journalists, or citizens at large? How should scientific institutions deal with their new responsibilities in science communication in the face of the decreasing significance of legacy media and its role as branch within a system of checks and balances?

Questions and challenges like these will be tackled by an international consortium of 24 partners in the course of an EU-funded four-year project, coordinated by Rhine-Waal University of Applied Sciences in Cleves, Germany.

The project, which is budgeted with 4 million Euros, is called “NUCLEUS”, an acronym for a “New Understanding of Communication, Learning and Engagement in Universities and Scientific Institutions”. It is expected to start in September 2015.

“Our consortium is aware of how ambitious this project is”, says project leader Professor Alexander Gerber from Rhine-Waal, Germany. “It aims at nothing less than rethinking the very foundations of communication governance in institutionalised science.” The main goal, according to Prof. Gerber, is to find ways to align the communication structures and processes in science on the one hand with the expectations of policy-makers and civil society in the context of “Responsible Research and Innovation” (RRI) on the other. Thereby the rather complex paradigm of “RRI” is also expected to become more accessible to practicing scientists and to the general public.

NUCLEUS describes the scientific institutions as biological ‘cells’, in which the “Nucleus” represents the governance or the leading entity. In order to survive in a dynamic environment, these ‘Nuclei’ need to be appropriately interlinked with other cells around them, such as media, economy, public engagement, and policy. By investigating the links between these ‘cells’ and the obstacles which may hinder a proper upstream engagement in science, the project is expected to result in a widely-applicable ‘DNA’ for RRI, including 30 ‘test beds’ across Europe and a list of practical guidelines for higher education institutions and science-funding agencies. This ‘DNA’ will then form the basis of a living network to ensure the sustainability of the approach beyond the project timeline as well.

NUCLEUS is expected to contribute to the debate on science policy both on national and European levels, including the future design of Horizon 2020 and the European Research Area.

Further information can be found from September onwards under www.nucleus-project.eu

The project coordinator, Rhine-Waal University of Applied Sciences, is one of Europe’s youngest universities and has been explicitly designed to be interdisciplinary and international. It runs Europe’s only full-fledged Bachelor’s degree in science communication.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 664932.

The NUCLEUS consortium comprises the following partners:

Associations

• Beijing Association for Science and Technology, BAST, China
• European Union of Science Journalists' Association, EUSJA, Finland
• European Science Events Association, EUSEA, Sweden

Universities

• University of Aberdeen, UK, Scotland
• Bielefeld University, Germany
• Ruhr University Bochum, Germany
• Delft University of Technology, The Netherlands
• Dublin City University, Republic of Ireland
• University of Edinburgh, UK, Scotland
• Ilia State University Tbilisi, Georgia
• Université de Lyon, France
• University of Malta, Malta
• Nottingham Trent University, UK, England
• Rhine-Waal University of Applied Sciences (Coordinator), Germany
• University of Twente, The Netherlands

Extramural Institutions

• Mathematical Institute of the Serbian Academy of Sciences and Arts, Serbia
• China Research Institute for Science Popularization, CRISP, China

Networks and Municipalities

• City of Bochum / UniverCity Network Bochum, Germany
• Nottingham City Council, UK, England
• Science City Hannover, Germany
• South African Agency for Science and Technology Advancement, South Africa
• Wissenschaft im Dialog, Germany

Science Communication Practice and Evaluation

• Psiquadro, Italy
• Science View, Greece

Weitere Informationen:

http://www.hochschule-rhein-waal.de

Christin Hasken | idw - Informationsdienst Wissenschaft

Further reports about: Applied Sciences Communication Innovation Technology

More articles from Communications Media:

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

nachricht Product placement: Only brands placed very prominently benefit from 3D technology
07.07.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>