Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antennas in Your Clothes? New Design Could Pave the Way

24.08.2011
The next generation of communications systems could be built with a sewing machine.

To make communications devices more reliable, Ohio State University researchers are finding ways to incorporate radio antennas directly into clothing, using plastic film and metallic thread.

In the current issue of the journal IEEE Antennas and Wireless Propagation Letters, they report a new antenna design with a range four times larger than that of a conventional antenna worn on the body – one that is used by American soldiers today.

“Our primary goal is to improve communications reliability and the mobility of the soldiers,” said Chi-Chih Chen, a research associate professor of electrical and computer engineering at Ohio State. “But the same technology could work for police officers, fire fighters, astronauts – anybody who needs to keep their hands free for important work.”

For typical foot soldiers, mobility and communications are often at odds. An antenna can be a large and unwieldy addition to an already heavy load.

The idea of embedding communications devices in clothing to address this problem is not new, Chen explained. The Ohio State system takes elements from previous research and combines them in a new way, with the addition of a unique computer control device that lets multiple antennas work together in a single piece of clothing.

The result is a communications system that can send and receive signals in all directions, even through walls and inside a building, without a need for the wearer to carry an external antenna.

John Volakis, the Roy & Lois Chope Chair Professor and Director of the ElectroScience Laboratory at Ohio State, found a common analogy for the new design.

“In a way, we’re doing what’s already been done on a cell phone. You don’t see cell phones with external antennas anymore, because the antenna is part of the body of the phone,” Volakis said.

When antennas make contact with the human skin, however, the body tends to absorb radio signals and form a short circuit – a fact driven home by the recent difficulties with the antenna placement on the iPhone 4. Also, if an antenna is improperly placed, a person’s body can block it when he or she moves against a wall or other obstacles.

The Ohio State system overcomes these problems by surrounding the body with several antennas that work together to transmit or receive a signal, no matter which way a person is facing. An integrated computer control device senses body movement and switches between the antennas to activate the one with the best performance given the body’s position.

The engineers created a prototype antenna by etching thin layers of brass on a commercially available plastic film, called FR-4. The film is light and flexible, and can be sewn onto fabric.

They attached it into a vest at four locations –chest, back, and both shoulders. The computer controller – a metal box a little smaller than a credit card and an inch thick – was worn on a belt.

In laboratory tests, the experimental antenna system provided significantly greater signal strength compared to a conventional military “whip” antenna, enabling a range of communications four times larger.

Perhaps most importantly, the new antenna system worked in all directions, even as researchers tested it inside the hallways of the ElectroScience Lab, where doors and windows would normally interfere with the signal.

Key to the technology was the engineers’ development of network communications coding to coordinate the signals among the antennas. Doctoral student Gil-Young Lee developed a computer module to make the antenna control automatic. Lee, Chen, and Volakis co-authored the IEEE paper with Dimitrios Psychoudakis, senior research associate at the ElectroScience Lab.

They are partnering with an antenna design company, Applied EM of Hampton, VA, to commercialize the research, which was funded by a Small Business Innovation Research grant.

Chen currently estimates that the antenna systems, as demonstrated in the prototype, would cost $200 per person to implement, but mass production would bring that cost significantly down.

In the meantime, the engineers are working on printing antennas directly onto clothing, and embroidering antennas into clothing with metallic threads. A typical home sewing machine is now part of their laboratory equipment, and early tests have shown that the swirly designs they’ve embroidered into fabrics such as cotton – and even taffeta – can work as functional antennas.

That’s why Volakis envisions the technology to be adaptable for the general public. The elderly or disabled could wear clothing that would let them communicate in case of emergency, without the stigma they might feel in wearing a more visible assistive device.

“Imagine a vest or shirt, or even a fancy ball gown made with this technology,” he said, scrunching a sample of embroidered taffeta in his hand. “The antennas would be inconspicuous, and even attractive. People would want to wear them.”

Contact: Chi-Chih Chen, (614) 292-3403; Chen.118@osu.edu
John Volakis, (614) 292-5846; Volakis.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Images of embroidered antennas are available from Pam Frost Gorder.

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Communications Media:

nachricht Between filter bubbles, uneven visibility and transnationality
06.12.2017 | Schweizerischer Nationalfonds SNF

nachricht New Technologies for A/V Analysis and Search
13.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>