Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A sing-song way to a cure for speech disorder

05.10.2010
MU scientist compares classical singing to traditional Indian singing to find speech disorder treatment

Hindustani singing, a North Indian traditional style of singing, and classical singing, such as the music of Puccini, Mozart and Wagner, vary greatly in technique and sound. Now, speech-language pathology researchers at the University of Missouri are comparing the two styles in hopes of finding a treatment for laryngeal tremors, a vocal disorder associated with many neurological disorders that can result in severe communication difficulties.

Sound is developed in the larynx, an organ located in the neck. A laryngeal or vocal tremor occurs when the larynx spasms during speech, creating a breathy voice featuring a constantly shifting pitch. People with Parkinson's disease and other similar disorders often display vocal tremors. Currently, speech-language pathologists are only able to help patients manage tremors. By understanding the physiology behind voluntary and involuntary pitch fluctuation, an MU researcher hopes to find a treatment.

"Hindustani and classical singing styles are very different," said Nandhu Radhakrishnan, professor of communication science and disorders in the School of Health Professions. "In Hindustani singing, performers use 'Taan' to modulate pitch voluntarily, while classical singers use vibrato to vary pitch involuntarily. With this knowledge, we may be able to develop a specific therapy to cure laryngeal tremors."

Radhakrishnan is the first researcher to study the physiology of Hindustani singing. He worked with Ronald Scherer of Bowling Green State University in Ohio, and Santanu Bandyopadhyay, a vocal teacher in West Bengal, India.

In his study, he discovered several differences between Hindustani and classical singing. Primarily, Hindustani singing features a voluntary, rapid dip in pitch, which Radhakrishnan refers to as a "Taan gesture." In contrast, classical singers use a vocal modulation like vibrato to make a smooth transition between pitches.

Classical singers use what is known as a singer's formant to enhance a specific range of frequency that will be pleasing to the ear by lowering their larynx and widening the vocal tract. However, Hindustani singers do not use a singer's formant. Without this, Hindustani singers perform at a much lower volume than classical singers, and their singing voice sounds very similar to their speaking voice. Radhakrishnan also observed that Hindustani singing requires precise pronunciation of lyrics, whereas notes guide pronunciation in classical music.

To uncover the secrets of Hindustani singing, Radhakrishnan recorded a traditional Indian singing teacher repeatedly performing a single Taan gesture. Although singers usually perform several of these pitch fluctuations in succession, Radhakrishnan recorded just one gesture to isolate the technique for scientific study. Radhadrishnan used equipment that measures variables like lung pressure, the duration that vocal folds are open and closed, and the rate at which air is flowing out of the larynx.

The study was published recently in the Journal of Voice. In the coming months, Radhakrishnan will publish another study on Taan gestures that focuses on performance aspects of the technique.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Communications Media:

nachricht On patrol in social networks
25.01.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Tile Based DASH Streaming for Virtual Reality with HEVC from Fraunhofer HHI
03.01.2017 | Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>