Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cebit 2012 – Internet service prevents cable tangle in presentations at conferences and trade shows

23.02.2012
To connect a laptop to an additional monitor, projector or even to a monitor wall, a special cable was required, until now.

Researchers of the Saarland University’s Intel Visual Computing Institute overcome this obstacle by linking computer and monitor via an ‘Internet Service’. By this means, a screen’s contents can be shifted freely to any terminal’s display and even shown on large-scale monitor walls. The Saarland University’s scientists present their results for the first time at stand F34, in hall 9 at the computer fair Cebit. The trade show takes place in Hannover from March 6 to 10.

“Some try to play it off with a joke at their own expense; others wish the ground would open and swallow them up. So it happens every day during innumerable meetings,” comments Philipp Slusallek, professor of computer graphics at the Saarland University and scientific director in the German Research Center for Artificial Intelligence (DFKI). More and more embarrassing moments pass, until the person giving the talk finds the right cable to connect the projector and the presentation can finally be seen by everyone else.

Philipp Slusallek and his team wanted to cope with this cable tangle, and found an answer to the issue. Their solution even extends to the possibility of visualizing three-dimensional content on large monitor walls. “The approach is so simple,” explains Alexander Löffler, who, jointly with researchers of the Intel Visual Computing Institute, developed the relevant software ‘NetVFB’. Once installed on the computer, every application is compatible. The application’s monitor image can be shown in the “virtual frame buffer,” with the result that it is visible as a service on the network. The monitors in the conference room are also shown as services on the network. Löffler adds: “Now it is possible to show the presentation at the touch of a button on the requested display, enabled by a an Internet transmission.”

But there is more to come. With the new software, different laptop users’ screen images can be displayed on just one monitor. Due to the fact that the virtual frame buffer can be shown on numerous displays at the same time, it is also possible to observe and control a presentation via smartphone. The software can also be applied outside of conferences. Since modern LCD displays have a marginal width of only two or three millimeters, you can use them to build huge monitor walls with high resolution at low cost. Even if these monitors consist of more than 20 displays, one laptop is sufficient to control the content displayed on them through a regular WLAN connection. Up to now, this has been possible only with a considerable amount of hardware. Therefore, the innovative approach of the Saarbrucken computer scientists is also interesting in terms of perimeter advertising in sports stadiums or interactive displays in shops.

“On such monitor walls we even can show 3D movies like Avatar,” Löffler adds. If you use shutter glasses on that occasion, all monitors have to show the image for the right and for the left eye at exactly the same time, to ensure the desired spatial impression. “We accomplish this synchronization by controlling the hardware for the graphics output,” Löffler explains.

Internally, the software uses optimized video transmission protocols to transfer the synchronized image data directly from the virtual frame buffer to the displays. In the conventional approach, the unpacked display content is transferred sixty times per second via cable for diverse standards, such as VGA, DVI or HDMI, to the monitor. Particularly on high resolution displays, numerous gigabytes per second can easily result. With the Saarbrucken computer scientists’ approach, however, only the individually changed data, additionally compressed, needs to be sent. That reduces the effort to a fraction of what it was. In this way, it’s technically possible to transfer screen images to or from the displays of mobile terminals. The researchers use this technology, for instance, to work on a way to transmit the navigation monitor of a smart phone to the electronic display of a car’s dashboard. Thus, it could enable a new type of user interface beyond the automotive world.

For further information please contact:
Alexander Löffler
Phone: +49 681 85775-7743, E-Mail: alexander-loeffler@dfki.de
Gordon Bolduan, Exzellenzcluster “Multimodal Computing and Interaction“
Phone: +49 681 302-70741, E-Mail: bolduan@mmci.uni-saarland.de

Thorsten Mohr | Universität des Saarlandes
Further information:
http://www.intel-vci.uni-saarland.de/de/projekte/display-wall.html

More articles from CeBIT 2012:

nachricht UDE at the CeBIT fair: Protecting huge National Parks
07.03.2012 | Universität Duisburg-Essen

nachricht Cebit: Automated stress testing for Web 2.0 applications helps developers find programming errors
27.02.2012 | Universität des Saarlandes

All articles from CeBIT 2012 >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Poseidon goes Politics – Wer oder was regiert die Ozeane?

27.02.2017 | Veranstaltungen

Fachtagung Rapid Prototyping 2017 – Innovationen in Entwicklung und Produktion

27.02.2017 | Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
More VideoLinks >>>
Aktuelle Beiträge

Herz-Untersuchung: Kontrastmittel sparen mit dem Mini-Teilchenbeschleuniger

27.02.2017 | Medizintechnik

Neue Maßstäbe für eine bessere Wasserqualität in Europa

27.02.2017 | Biowissenschaften Chemie

Wenn der Schmerz keine Worte findet - Künstliche Intelligenz zur automatisierten Schmerzerkennung

27.02.2017 | Medizintechnik