Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cebit 2012 – Internet service prevents cable tangle in presentations at conferences and trade shows

23.02.2012
To connect a laptop to an additional monitor, projector or even to a monitor wall, a special cable was required, until now.

Researchers of the Saarland University’s Intel Visual Computing Institute overcome this obstacle by linking computer and monitor via an ‘Internet Service’. By this means, a screen’s contents can be shifted freely to any terminal’s display and even shown on large-scale monitor walls. The Saarland University’s scientists present their results for the first time at stand F34, in hall 9 at the computer fair Cebit. The trade show takes place in Hannover from March 6 to 10.

“Some try to play it off with a joke at their own expense; others wish the ground would open and swallow them up. So it happens every day during innumerable meetings,” comments Philipp Slusallek, professor of computer graphics at the Saarland University and scientific director in the German Research Center for Artificial Intelligence (DFKI). More and more embarrassing moments pass, until the person giving the talk finds the right cable to connect the projector and the presentation can finally be seen by everyone else.

Philipp Slusallek and his team wanted to cope with this cable tangle, and found an answer to the issue. Their solution even extends to the possibility of visualizing three-dimensional content on large monitor walls. “The approach is so simple,” explains Alexander Löffler, who, jointly with researchers of the Intel Visual Computing Institute, developed the relevant software ‘NetVFB’. Once installed on the computer, every application is compatible. The application’s monitor image can be shown in the “virtual frame buffer,” with the result that it is visible as a service on the network. The monitors in the conference room are also shown as services on the network. Löffler adds: “Now it is possible to show the presentation at the touch of a button on the requested display, enabled by a an Internet transmission.”

But there is more to come. With the new software, different laptop users’ screen images can be displayed on just one monitor. Due to the fact that the virtual frame buffer can be shown on numerous displays at the same time, it is also possible to observe and control a presentation via smartphone. The software can also be applied outside of conferences. Since modern LCD displays have a marginal width of only two or three millimeters, you can use them to build huge monitor walls with high resolution at low cost. Even if these monitors consist of more than 20 displays, one laptop is sufficient to control the content displayed on them through a regular WLAN connection. Up to now, this has been possible only with a considerable amount of hardware. Therefore, the innovative approach of the Saarbrucken computer scientists is also interesting in terms of perimeter advertising in sports stadiums or interactive displays in shops.

“On such monitor walls we even can show 3D movies like Avatar,” Löffler adds. If you use shutter glasses on that occasion, all monitors have to show the image for the right and for the left eye at exactly the same time, to ensure the desired spatial impression. “We accomplish this synchronization by controlling the hardware for the graphics output,” Löffler explains.

Internally, the software uses optimized video transmission protocols to transfer the synchronized image data directly from the virtual frame buffer to the displays. In the conventional approach, the unpacked display content is transferred sixty times per second via cable for diverse standards, such as VGA, DVI or HDMI, to the monitor. Particularly on high resolution displays, numerous gigabytes per second can easily result. With the Saarbrucken computer scientists’ approach, however, only the individually changed data, additionally compressed, needs to be sent. That reduces the effort to a fraction of what it was. In this way, it’s technically possible to transfer screen images to or from the displays of mobile terminals. The researchers use this technology, for instance, to work on a way to transmit the navigation monitor of a smart phone to the electronic display of a car’s dashboard. Thus, it could enable a new type of user interface beyond the automotive world.

For further information please contact:
Alexander Löffler
Phone: +49 681 85775-7743, E-Mail: alexander-loeffler@dfki.de
Gordon Bolduan, Exzellenzcluster “Multimodal Computing and Interaction“
Phone: +49 681 302-70741, E-Mail: bolduan@mmci.uni-saarland.de

Thorsten Mohr | Universität des Saarlandes
Further information:
http://www.intel-vci.uni-saarland.de/de/projekte/display-wall.html

More articles from CeBIT 2012:

nachricht UDE at the CeBIT fair: Protecting huge National Parks
07.03.2012 | Universität Duisburg-Essen

nachricht Cebit: Automated stress testing for Web 2.0 applications helps developers find programming errors
27.02.2012 | Universität des Saarlandes

All articles from CeBIT 2012 >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
More VideoLinks >>>
Aktuelle Beiträge

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungsnachrichten

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie