Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech Engineers Awarded $800,000 to Improve Radio Spectrum Usage

16.01.2013
Cognitive radios, the “intelligent” cell phones or police radios that help determine the best way to operate in any given situation, are becoming the “radio platform of the next generation of wireless communications.

They are also expected to play a major role in tactical communications for the U.S. Navy and for the Department of Defense,” said Thomas Hou, professor of electrical and computer engineering in the College of Engineering at Virginia Tech.

However, a major technical obstacle remains and that is the availability of frequency space on an already crowded wireless array of networks.

Hou and his colleagues Wenjing Lou of computer science and Hanif Sherali of industrial and systems engineering have proposed some novel solutions for spectrum sharing that may avoid the presence of interference.

Both the National Science Foundation (NSF) and the Office of Naval Research (ONR) are funding their work on efficient spectrum sharing, although each grant addresses different types of problems and different application domains.

Cognitive radios are valued because they will configure to their environment and their user’s needs. The new cognitive radios are similar to living creatures in that they are aware of their surroundings and understand their own and their user’s capabilities and the governing social constraints. Under development for more than a decade, cognitive radio transmission still faces challenges.

To address some of these issues, the NSF project, valued at $500,000, is aimed at a much higher efficiency sharing of the spectrum where the networks actually coexist.

“In the wireless networking community the prevailing spectrum-sharing paradigm is that secondary cognitive radio nodes are allowed to use a spectrum band allocated to primary nodes only when the primary nodes are not using the band,” Hou, the principal investigator on the projects, said. The Federal Communication Commission (FCC) requires that secondary nodes should not produce interference that might be harmful to primary nodes.

“But if we can somehow configure secondary nodes not to be felt by the primary nodes, then we can achieve transparent coexistence,” Hou added. This is the main research theme of the NSF grant.

Specifically, the team plans to explore the potential of the simultaneous activation of a secondary network with the primary network, as along as the interference produced by secondary nodes can be properly controlled (e.g., canceled) by the secondary nodes. That is, secondary users share the spectrum in a much more aggressive manner than the interference-avoidance paradigm.

“Here, secondary nodes are allowed to be active as long as they can cancel their interference to the primary nodes in such a way that the primary nodes do not feel the presence of the secondary nodes. “Activities by the secondary nodes are made in a transparent or invisible way to primary nodes,” Hou explained.

Under this paradigm, secondary nodes use powerful physical layer capabilities to handle interference cancellation. “Further, the burden of this interference cancellation will solely rest upon the secondary nodes so as to be truly transparent or invisible to primary nodes. As expected, such a paradigm has the potential of offering much greater spectrum efficiency and network capacity than those under the existing paradigm,” Hou added.

The second grant, awarded by the ONR and valued at $300,000, will allow Hou, Lou and Sherali to look at specific spectrum-sharing methods for tactical communications.

In this project, they will explore a new spectrum-sharing method for DoD and the Navy’s cognitive radio ad hoc networks. The proposed method is called cooperative sharing, specifically targeted to the application scenario where the DoD or Navy’s ad hoc network, in the role of a secondary network, wishes to access the radio spectrum in a friendly environment where the underlying spectrum is owned by allied coalition forces network.

With this method, a secondary network and the primary network share each other’s network resource or nodes in a cooperative and friendly manner. “Although packets from the primary network may still enjoy priority over packets from the secondary network, packets from either network will take advantage of the nodes in the other network on their way to their destinations,” Hou explained.

“The proposed cooperative sharing paradigm allows complete sharing of network resources between the primary and secondary networks in a cooperative manner. The priority of traffic from the primary network can be preserved while network connectivity and other network performance metric can be improved for both networks. This new paradigm allows many new possibilities for DoD ad hoc networks to access radio spectrum and significantly enhance the Navy’s tactical communications capabilities," Hou added.

Hou is the co-editor of Cognitive Radio Communications and Networks: Principles and Practice, adopted as a textbook by a number of universities around the world. Lou has a NSF CAREER Award based on the study of wireless networks. Sherali, a member of the National Academy of Engineering, is world-renowned for his abilities in designing optimization algorithms.

Lynn A. Nystrom | Newswise
Further information:
http://www.vt.edu

More articles from Awards Funding:

nachricht Breakthrough Prize for Kim Nasmyth
04.12.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht The key to chemical transformations
29.11.2017 | Schweizerischer Nationalfonds SNF

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>