Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech Engineers Awarded $800,000 to Improve Radio Spectrum Usage

16.01.2013
Cognitive radios, the “intelligent” cell phones or police radios that help determine the best way to operate in any given situation, are becoming the “radio platform of the next generation of wireless communications.

They are also expected to play a major role in tactical communications for the U.S. Navy and for the Department of Defense,” said Thomas Hou, professor of electrical and computer engineering in the College of Engineering at Virginia Tech.

However, a major technical obstacle remains and that is the availability of frequency space on an already crowded wireless array of networks.

Hou and his colleagues Wenjing Lou of computer science and Hanif Sherali of industrial and systems engineering have proposed some novel solutions for spectrum sharing that may avoid the presence of interference.

Both the National Science Foundation (NSF) and the Office of Naval Research (ONR) are funding their work on efficient spectrum sharing, although each grant addresses different types of problems and different application domains.

Cognitive radios are valued because they will configure to their environment and their user’s needs. The new cognitive radios are similar to living creatures in that they are aware of their surroundings and understand their own and their user’s capabilities and the governing social constraints. Under development for more than a decade, cognitive radio transmission still faces challenges.

To address some of these issues, the NSF project, valued at $500,000, is aimed at a much higher efficiency sharing of the spectrum where the networks actually coexist.

“In the wireless networking community the prevailing spectrum-sharing paradigm is that secondary cognitive radio nodes are allowed to use a spectrum band allocated to primary nodes only when the primary nodes are not using the band,” Hou, the principal investigator on the projects, said. The Federal Communication Commission (FCC) requires that secondary nodes should not produce interference that might be harmful to primary nodes.

“But if we can somehow configure secondary nodes not to be felt by the primary nodes, then we can achieve transparent coexistence,” Hou added. This is the main research theme of the NSF grant.

Specifically, the team plans to explore the potential of the simultaneous activation of a secondary network with the primary network, as along as the interference produced by secondary nodes can be properly controlled (e.g., canceled) by the secondary nodes. That is, secondary users share the spectrum in a much more aggressive manner than the interference-avoidance paradigm.

“Here, secondary nodes are allowed to be active as long as they can cancel their interference to the primary nodes in such a way that the primary nodes do not feel the presence of the secondary nodes. “Activities by the secondary nodes are made in a transparent or invisible way to primary nodes,” Hou explained.

Under this paradigm, secondary nodes use powerful physical layer capabilities to handle interference cancellation. “Further, the burden of this interference cancellation will solely rest upon the secondary nodes so as to be truly transparent or invisible to primary nodes. As expected, such a paradigm has the potential of offering much greater spectrum efficiency and network capacity than those under the existing paradigm,” Hou added.

The second grant, awarded by the ONR and valued at $300,000, will allow Hou, Lou and Sherali to look at specific spectrum-sharing methods for tactical communications.

In this project, they will explore a new spectrum-sharing method for DoD and the Navy’s cognitive radio ad hoc networks. The proposed method is called cooperative sharing, specifically targeted to the application scenario where the DoD or Navy’s ad hoc network, in the role of a secondary network, wishes to access the radio spectrum in a friendly environment where the underlying spectrum is owned by allied coalition forces network.

With this method, a secondary network and the primary network share each other’s network resource or nodes in a cooperative and friendly manner. “Although packets from the primary network may still enjoy priority over packets from the secondary network, packets from either network will take advantage of the nodes in the other network on their way to their destinations,” Hou explained.

“The proposed cooperative sharing paradigm allows complete sharing of network resources between the primary and secondary networks in a cooperative manner. The priority of traffic from the primary network can be preserved while network connectivity and other network performance metric can be improved for both networks. This new paradigm allows many new possibilities for DoD ad hoc networks to access radio spectrum and significantly enhance the Navy’s tactical communications capabilities," Hou added.

Hou is the co-editor of Cognitive Radio Communications and Networks: Principles and Practice, adopted as a textbook by a number of universities around the world. Lou has a NSF CAREER Award based on the study of wireless networks. Sherali, a member of the National Academy of Engineering, is world-renowned for his abilities in designing optimization algorithms.

Lynn A. Nystrom | Newswise
Further information:
http://www.vt.edu

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>