Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Research: Building a Better Bomb Sniffer

02.09.2011
A team led by University of Arizona professor and inventor M. Bonner Denton received a 2011 R&D 100 Award for a breakthrough in detection technology that could advance monitoring for nuclear activity, environmental damage, forensic testing and more.

What do identifying explosives in a piece of luggage, determining the origin of a bullet and unlocking the age of rocks have in common?

They all employ a technology called mass spectrometry, used to detect minute traces of a substance and determining its chemical composition.

In the first major improvement in mass spectrometry detection technology in more than two decades, a research group led by M. Bonner Denton and Roger Sperline in the University of Arizona's department of chemistry and biochemistry has developed a way to dramatically improve the detection capabilities of mass spectrometers, which in turn could advance monitoring for nuclear activity, environmental damage, forensic testing and more.

The technology improves the performance of a widely used scientific instrument that enables quick and efficient analysis of research samples and was developed with collaborators at iMAGERLABS, Pacific Northwest National Laboratory, Indiana University and Spectro Analytical Instruments.

R&D Magazine honored the achievement, called Array Detection Technology for Mass Spectrometry, with its 2011 R&D 100 Award, which is given annually to recognize the 100 most technologically significant new products introduced in the past year.

Similar to the way an optical spectrometer splits light into its different wavelengths, a mass spectrometer splits an unknown substance into its chemical components and mass fragments. By precisely measuring the fragments' atomic masses, which are specific to each chemical element, the mass spectrometer gives its operator clues as to the composition of the sample.

"Whether we want to analyze a molecule or an atom, mass spectrometry can give us insight into the composition," Denton explained. "The first step is to give the molecules, molecular fragments or atoms an electric charge. Once we give them an electrical charge, we can accelerate them with an electrical field."

As the particles fly along their trajectories, the lighter particles will be deflected more than the heavier particles by the magnetic force, causing them to fan out and hit the detector in different places along a so-called focal plane. The place a particle hits depends on its mass and thus gives clues to its identity.

"Traditionally in dispersive mass spectrometry, one observed one mass for a period of time, before scanning over to observe the next mass," Denton said. "Our new technology observes the entire mass range for the same period of time conventionally spent at each mass, and we obtain the entire spectrum with high sensitivity in one single observation period. This has never been possible before."

Denton said that if one wanted to scan isotope ratios – atoms of the same element that have different masses – approximately 10,000 resolution channels would be required for a complete elemental analysis, and the measurement would take a considerable amount of time.

"With our technology, it takes approximately one to three minutes because all masses are observed simultaneously."

The biggest hurdle facing the team on the track to a faster and more sensitive detector was to find a way to make the individual detection units small enough to fit hundreds of them onto an extremely small area.

"In the first versions, we had to make a wire bond for each pixel, so we were forced to utilize more and more wire bonds that were narrower and narrower, and soon we reached a point where we could not make individual pixels any smaller," Denton said.

"So I thought, why don't we make a linear device with a large number of tiny, finely spaced metal fingers on the same substrate as the amplifiers using the same integrated circuit fabrication technology? That way, we can forget about the wire bonding, which limits how small we can go with the technology."

So small are the pixels or sensing elements in the latest version of the new detector array that approximately six of its detection units would fit across the edge of a sheet of paper.

The first company to commercialize the technology is SPECTRO Analytical Instruments GmbH based in Germany. According to Denton, the Spectro instrument contains 9,600 pixels grouped in pairs of low sensitivity and high sensitivity, which together are able to simultaneously monitor all elemental masses across the periodic table of elements, from hydrogen all the way to uranium.

Potential applications are many, Denton said, from handheld instruments sniffing out explosives at ports of entry, determining the age of rocks, tracing the source of agricultural products based on the soil they were grown in, to crime scene investigations. Mass spectrometry can reveal, for example, where the lead was mined that later was manufactured into a bullet.

In a different line of research, Denton said his team is already using similar technology to develop a device capable of detecting traces of explosives in the air hundreds of feet away. Such a device would make it much easier for military and civilian personnel to detect and disarm improvised explosive bombs before they could unleash their deadly force.

According to R&D Magazine, the R&D 100 Awards have long been a benchmark of excellence for industry sectors as diverse as telecommunications, high-energy physics, software, manufacturing and biotechnology.

For industry leaders, government labs and academic institutions, the awards can be vital for gauging their efforts at commercialization of emerging technologies. In winning an R&D 100 Award, developers often find the push their product needs to find success in the marketplace.

Since 1963, the R&D 100 Awards have identified revolutionary technologies newly introduced to the market. Many of these have become household names, including ATMs (1973), the fax machine (1975), the liquid crystal display (1980), the Nicoderm anti-smoking patch (1992), Taxol anticancer drug (1993) and high-definition TV (1998).

The Array Detection Technology for Mass Spectrometry is the result of long-standing collaborations among several academic and industry partners and funding provided by the Department of Energy, Denton said.

"Our group, together with iMAGERLABS, Inc. developed the original technology," he said. "We sent our prototypes to collaborators at the Pacific Northwest Northern Laboratory and Indiana University, where they were tested for their capabilities. The product was then adapted into a commercial application by SPECTRO Analytical Instruments. This award really recognizes all the parties involved."

LINK:
2011 R&D 100 Awards:
http://www.rdmag.com/News/2011/06/R-D-100-2011-Winners-Announced .
CONTACTS:
M. Bonner Denton
Department of Chemistry and Biochemistry
The University of Arizona
520-621-8246
Daniel Stolte
University Communications
The University of Arizona
520-626-4402
stolte@email.arizona.edu

Daniel Stolte | The University of Arizona
Further information:
http://www.arizona.edu

More articles from Awards Funding:

nachricht CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research
24.05.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht BMBF funds translational project to improve radiotherapy
10.05.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>