Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UA Research: Building a Better Bomb Sniffer

A team led by University of Arizona professor and inventor M. Bonner Denton received a 2011 R&D 100 Award for a breakthrough in detection technology that could advance monitoring for nuclear activity, environmental damage, forensic testing and more.

What do identifying explosives in a piece of luggage, determining the origin of a bullet and unlocking the age of rocks have in common?

They all employ a technology called mass spectrometry, used to detect minute traces of a substance and determining its chemical composition.

In the first major improvement in mass spectrometry detection technology in more than two decades, a research group led by M. Bonner Denton and Roger Sperline in the University of Arizona's department of chemistry and biochemistry has developed a way to dramatically improve the detection capabilities of mass spectrometers, which in turn could advance monitoring for nuclear activity, environmental damage, forensic testing and more.

The technology improves the performance of a widely used scientific instrument that enables quick and efficient analysis of research samples and was developed with collaborators at iMAGERLABS, Pacific Northwest National Laboratory, Indiana University and Spectro Analytical Instruments.

R&D Magazine honored the achievement, called Array Detection Technology for Mass Spectrometry, with its 2011 R&D 100 Award, which is given annually to recognize the 100 most technologically significant new products introduced in the past year.

Similar to the way an optical spectrometer splits light into its different wavelengths, a mass spectrometer splits an unknown substance into its chemical components and mass fragments. By precisely measuring the fragments' atomic masses, which are specific to each chemical element, the mass spectrometer gives its operator clues as to the composition of the sample.

"Whether we want to analyze a molecule or an atom, mass spectrometry can give us insight into the composition," Denton explained. "The first step is to give the molecules, molecular fragments or atoms an electric charge. Once we give them an electrical charge, we can accelerate them with an electrical field."

As the particles fly along their trajectories, the lighter particles will be deflected more than the heavier particles by the magnetic force, causing them to fan out and hit the detector in different places along a so-called focal plane. The place a particle hits depends on its mass and thus gives clues to its identity.

"Traditionally in dispersive mass spectrometry, one observed one mass for a period of time, before scanning over to observe the next mass," Denton said. "Our new technology observes the entire mass range for the same period of time conventionally spent at each mass, and we obtain the entire spectrum with high sensitivity in one single observation period. This has never been possible before."

Denton said that if one wanted to scan isotope ratios – atoms of the same element that have different masses – approximately 10,000 resolution channels would be required for a complete elemental analysis, and the measurement would take a considerable amount of time.

"With our technology, it takes approximately one to three minutes because all masses are observed simultaneously."

The biggest hurdle facing the team on the track to a faster and more sensitive detector was to find a way to make the individual detection units small enough to fit hundreds of them onto an extremely small area.

"In the first versions, we had to make a wire bond for each pixel, so we were forced to utilize more and more wire bonds that were narrower and narrower, and soon we reached a point where we could not make individual pixels any smaller," Denton said.

"So I thought, why don't we make a linear device with a large number of tiny, finely spaced metal fingers on the same substrate as the amplifiers using the same integrated circuit fabrication technology? That way, we can forget about the wire bonding, which limits how small we can go with the technology."

So small are the pixels or sensing elements in the latest version of the new detector array that approximately six of its detection units would fit across the edge of a sheet of paper.

The first company to commercialize the technology is SPECTRO Analytical Instruments GmbH based in Germany. According to Denton, the Spectro instrument contains 9,600 pixels grouped in pairs of low sensitivity and high sensitivity, which together are able to simultaneously monitor all elemental masses across the periodic table of elements, from hydrogen all the way to uranium.

Potential applications are many, Denton said, from handheld instruments sniffing out explosives at ports of entry, determining the age of rocks, tracing the source of agricultural products based on the soil they were grown in, to crime scene investigations. Mass spectrometry can reveal, for example, where the lead was mined that later was manufactured into a bullet.

In a different line of research, Denton said his team is already using similar technology to develop a device capable of detecting traces of explosives in the air hundreds of feet away. Such a device would make it much easier for military and civilian personnel to detect and disarm improvised explosive bombs before they could unleash their deadly force.

According to R&D Magazine, the R&D 100 Awards have long been a benchmark of excellence for industry sectors as diverse as telecommunications, high-energy physics, software, manufacturing and biotechnology.

For industry leaders, government labs and academic institutions, the awards can be vital for gauging their efforts at commercialization of emerging technologies. In winning an R&D 100 Award, developers often find the push their product needs to find success in the marketplace.

Since 1963, the R&D 100 Awards have identified revolutionary technologies newly introduced to the market. Many of these have become household names, including ATMs (1973), the fax machine (1975), the liquid crystal display (1980), the Nicoderm anti-smoking patch (1992), Taxol anticancer drug (1993) and high-definition TV (1998).

The Array Detection Technology for Mass Spectrometry is the result of long-standing collaborations among several academic and industry partners and funding provided by the Department of Energy, Denton said.

"Our group, together with iMAGERLABS, Inc. developed the original technology," he said. "We sent our prototypes to collaborators at the Pacific Northwest Northern Laboratory and Indiana University, where they were tested for their capabilities. The product was then adapted into a commercial application by SPECTRO Analytical Instruments. This award really recognizes all the parties involved."

2011 R&D 100 Awards: .
M. Bonner Denton
Department of Chemistry and Biochemistry
The University of Arizona
Daniel Stolte
University Communications
The University of Arizona

Daniel Stolte | The University of Arizona
Further information:

More articles from Awards Funding:

nachricht VDI presents International Bionic Award of the Schauenburg Foundation
26.10.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>