U.S. ITER awards agreement for Tokamak Cooling Water System

The TCWS is a complex piping network that is subdivided into four primary heat transfer subsystems with supporting functions performed by three additional subsystems. It removes heat that is generated by the plasma and absorbed by ITER’s internal components and vacuum vessel while controlling the temperature of the device’s Neutral Beam Injector. The system also will be used for baking and drying to support operations.

Specific work tasks will be authorized by individual task orders. Most of the TCWS subsystems are planned for delivery within the five-year duration of the agreement, although there is an option to extend if additional time is required.

The ITER Project is an international collaboration of scientists and engineers with the mission of designing and constructing a burning plasma experiment to demonstrate the scientific and technological feasibility of fusion power. The goal is to produce fusion power that would be at least ten times greater than the external power delivered to heat the plasma.

The United States is working with its international partners, which include the People's Republic of China, the European Union, India, Japan, the Republic of Korea and the Russian Federation. The device is being assembled at Cadarache in southeastern France from components designed and fabricated in the member countries.

The U.S. ITER Project Office is hosted by ORNL and supported by the U.S. Department of Energy Office of Science.

For more information, please visit https://www.usiter.org/.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Media Contact

Cindy R. Lundy Newswise Science News

All latest news from the category: Awards Funding

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors