Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thomas Wollert receives Eppendorf Award for Young European Investigators

20.04.2015

With the Eppendorf Young Investigator Award, the Eppendorf AG honors outstanding work in biomedical research in collaboration with the scientific journal Nature.

Thomas Wollert, group leader at the Max Planck Institute of Biochemistry, was selected by an independent Award Jury for his groundbreaking studies to reveal how fundamental cellular transport processes are coordinated at a molecular level.


The biochemist receives the 20,000 Euro prize for identifying mechanisms that drive intracellular recycling pathways. The official award ceremony with representatives from science, economy, and media will take place at the EMBL Advanced Training Centre in Heidelberg, Germany, on June 25, 2015.

How do cells get rid of their waste?

The cells of our body face similar challenges as we do: without efficient waste disposal systems heaps of trash will accumulate over time. Human cells therefore rely on specific mechanisms to pick up cellular waste such as superfluous or damaged organelles and to deliver them to recycling facilities. Diminished performance of this cellular recycling system may cause severe disorders including Alzheimer´s disease or cancer.

The research of Thomas Wollert and his team focuses on autophagy, which represents an important recycling system of the cell. During autophagy, cellular waste is captured and subsequently delivered to specialized recycling facilities, called lysosomes. Thus, autophagy protects the cell from accumulating cell debris.

“The Eppendorf-Award honors our efforts to understand cellular transport mechanisms at a molecular scale,” says Thomas Wollert, group leader at the MPI of Biochemistry since 2010. “Our findings might provide the basis for the development of new therapies against cancer or neurodegenerative diseases such as Alzheimer.”

With the Eppendorf Young Investigator Award, which was established in 1995, the Eppendorf AG honors in partnership with the scientific journal Nature outstanding work in biomedical research to support young scientists in Europe up to on age of 35.

The Award winner is selected by an independent committee composed of chairman Prof. Reinhard Jahn (Max Planck Institute for Biophysical Chemistry, Göttingen, Germany), Prof. Dieter Häussinger (Clinic for Gastroenterology, Hepatology and Infectiology, Düsseldorf, Germany), Prof. Maria Leptin (EMBO, Heidelberg, Germany), and Prof. Martin J. Lohse (Institute for Pharmacology and Toxicology, University of Würzburg, Germany). The award is endowed with 20,000 €.

Contact
Dr. Thomas Wollert
Molecular Membrane and Organelle Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Email: wollert@biochem.mpg.de
www.biochem.mpg.de/wollert

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/4979496/20150420_wollert_eppendorf - Press Release and Further Information
http://www.biochem.mpg.de/en/rg/wollert - Research Group "Molecular Membrane and Organelle Biology" (Dr. Thomas Wollert)

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Awards Funding:

nachricht Breakthrough Prize for Kim Nasmyth
04.12.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht The key to chemical transformations
29.11.2017 | Schweizerischer Nationalfonds SNF

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>