Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic biofilter wins through to the top ‘Sweet Sixteen’ in Boston

07.11.2012
Bielefeld students on a par with teams from international elite universities

Months of painstaking work in the laboratory at Bielefeld University‘s Center for Biotechnology (CeBiTec) have paid off: the 15 students participating in this year’s ‘international Genetically Engineered Machine competition’ (iGEM) at the Massachusetts Institute of Technology (MIT) have good reason to celebrate.

The goal of their project was to develop a biological filter that removes estrogen from drinking water. It was a success: they managed to produce enzymes that break down the hormone. On Monday 5 November, the competition finals came to a close in Boston.

From 190 teams throughout the world, Bielefeld’s students made it through to the ‘Sweet Sixteen’, the selection of the 16 best teams in the company of teams from such prestigious universities as Stanford University (USA), the Canadian University of Calgary, and Jiaotong University in Shanghai, China.

More than 70 teams from throughout the world got through to the finals of the top student competition in synthetic biology. The Bielefeld team was one of five German teams at the start. Bielefeld University has now participated in the iGEM competition for the third year running and already succeeded in qualifying for Boston in 2010 and 2011.

This year’s team, like its predecessors, made it into the ‘Sweet Sixteen’. ‘We stand in direct comparison with universities like Stanford and Cornell. At first, that seemed very intimidating, but we soon noticed they were having to fight exactly the same problems as we were. And with our know-how, we can match the pace here’, says Moritz Müller, a master student of molecular biotechnology.

Enzymes from fungi growing on trees filter out medicine residues from sewage and drinking water

Conventional methods of filtering waste water in sewage treatment plants are unable to completely remove medicine residues such as the estrogens in birth control pills. These residues then find their way into rivers and lakes and also accumulate in our drinking water. For fish and other aquatic life, estrogens can lead to reproductive and developmental disorders and even to the formation of female characteristics in males. The potential long-term consequences for human beings – declining sperm counts, infertility, various cancers, and osteoporosis – are still largely unknown.

The Bielefeld iGEM team has developed a biological filter in which specific enzymes (so-called laccases) break down these medicine residues. One known source of particularly efficient laccases is the turkey tail, a type of fungus that grows on trees. Using methods from synthetic biology, the students succeeded in synthesizing this enzyme and applying it to filter material.

‘We didn’t want to invent something totally crazy with our project – just because it’s technically feasible. We wanted to do something that could actually be put to use in the near future, perhaps in 20 years, and be a real benefit’, explains Robert Braun, a master student of molecular biotechnology.

‘The biofilter is such a project. And we have shown that our idea works. In principle, a company could now come along and develop our filter further. We ourselves have got to get back to our studies – most of us have rather neglected them for the last 6 months. However, the experiences we have gathered more than compensate for that’.

International competition

The iGEM competition has been held every year since 2003 by the Massachusetts Institute of Technology (MIT) in Boston. Starting as an MIT study course, the number of competitors has grown rapidly from five teams in 2004 to 190 in the present year. All teams face the same task: taking their project from the idea across the laboratory work to gaining funding and communicating the findings. On the student level, the iGEM can be seen as the world championship in synthetic biology that shows the future potential of this still young field of research. The Bielefeld iGEM team is being funded by Bielefeld University‘s Center for Biotechnology (CeBiTec) and the BIO.NRW Cluster Biotechnology North Rhine-Westphalia.

Contact:
Robert Braun, Bielefeld University
iGEM-Team Bielefeld-Germany
Telephone: 0162 3167424
Email: rbraun@igem-bielefeld.de

Ingo Lohuis | idw
Further information:
http://www.igem-bielefeld.de
http://2012.igem.org/Team:Bielefeld-Germany

More articles from Awards Funding:

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Scientist from Kiel University coordinates Million Euros Project in Inflammation Research
19.01.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>