Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Synthetic biofilter wins through to the top ‘Sweet Sixteen’ in Boston

Bielefeld students on a par with teams from international elite universities

Months of painstaking work in the laboratory at Bielefeld University‘s Center for Biotechnology (CeBiTec) have paid off: the 15 students participating in this year’s ‘international Genetically Engineered Machine competition’ (iGEM) at the Massachusetts Institute of Technology (MIT) have good reason to celebrate.

The goal of their project was to develop a biological filter that removes estrogen from drinking water. It was a success: they managed to produce enzymes that break down the hormone. On Monday 5 November, the competition finals came to a close in Boston.

From 190 teams throughout the world, Bielefeld’s students made it through to the ‘Sweet Sixteen’, the selection of the 16 best teams in the company of teams from such prestigious universities as Stanford University (USA), the Canadian University of Calgary, and Jiaotong University in Shanghai, China.

More than 70 teams from throughout the world got through to the finals of the top student competition in synthetic biology. The Bielefeld team was one of five German teams at the start. Bielefeld University has now participated in the iGEM competition for the third year running and already succeeded in qualifying for Boston in 2010 and 2011.

This year’s team, like its predecessors, made it into the ‘Sweet Sixteen’. ‘We stand in direct comparison with universities like Stanford and Cornell. At first, that seemed very intimidating, but we soon noticed they were having to fight exactly the same problems as we were. And with our know-how, we can match the pace here’, says Moritz Müller, a master student of molecular biotechnology.

Enzymes from fungi growing on trees filter out medicine residues from sewage and drinking water

Conventional methods of filtering waste water in sewage treatment plants are unable to completely remove medicine residues such as the estrogens in birth control pills. These residues then find their way into rivers and lakes and also accumulate in our drinking water. For fish and other aquatic life, estrogens can lead to reproductive and developmental disorders and even to the formation of female characteristics in males. The potential long-term consequences for human beings – declining sperm counts, infertility, various cancers, and osteoporosis – are still largely unknown.

The Bielefeld iGEM team has developed a biological filter in which specific enzymes (so-called laccases) break down these medicine residues. One known source of particularly efficient laccases is the turkey tail, a type of fungus that grows on trees. Using methods from synthetic biology, the students succeeded in synthesizing this enzyme and applying it to filter material.

‘We didn’t want to invent something totally crazy with our project – just because it’s technically feasible. We wanted to do something that could actually be put to use in the near future, perhaps in 20 years, and be a real benefit’, explains Robert Braun, a master student of molecular biotechnology.

‘The biofilter is such a project. And we have shown that our idea works. In principle, a company could now come along and develop our filter further. We ourselves have got to get back to our studies – most of us have rather neglected them for the last 6 months. However, the experiences we have gathered more than compensate for that’.

International competition

The iGEM competition has been held every year since 2003 by the Massachusetts Institute of Technology (MIT) in Boston. Starting as an MIT study course, the number of competitors has grown rapidly from five teams in 2004 to 190 in the present year. All teams face the same task: taking their project from the idea across the laboratory work to gaining funding and communicating the findings. On the student level, the iGEM can be seen as the world championship in synthetic biology that shows the future potential of this still young field of research. The Bielefeld iGEM team is being funded by Bielefeld University‘s Center for Biotechnology (CeBiTec) and the BIO.NRW Cluster Biotechnology North Rhine-Westphalia.

Robert Braun, Bielefeld University
iGEM-Team Bielefeld-Germany
Telephone: 0162 3167424

Ingo Lohuis | idw
Further information:

More articles from Awards Funding:

nachricht Professor Ignacio Cirac receives Hamburg Prize for Theoretical Physics
23.09.2015 | Max-Planck-Institut für Quantenoptik

nachricht Looking into the retina—Philipp Berens receives Bernstein Award 2015
15.09.2015 | Nationales Bernstein Netzwerk Computational Neuroscience

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

07.10.2015 | Life Sciences

Research on clean diesel engine technology: Reduce nitrogen oxide emissions and consumption

07.10.2015 | Machine Engineering

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

More VideoLinks >>>