Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic biofilter wins through to the top ‘Sweet Sixteen’ in Boston

07.11.2012
Bielefeld students on a par with teams from international elite universities

Months of painstaking work in the laboratory at Bielefeld University‘s Center for Biotechnology (CeBiTec) have paid off: the 15 students participating in this year’s ‘international Genetically Engineered Machine competition’ (iGEM) at the Massachusetts Institute of Technology (MIT) have good reason to celebrate.

The goal of their project was to develop a biological filter that removes estrogen from drinking water. It was a success: they managed to produce enzymes that break down the hormone. On Monday 5 November, the competition finals came to a close in Boston.

From 190 teams throughout the world, Bielefeld’s students made it through to the ‘Sweet Sixteen’, the selection of the 16 best teams in the company of teams from such prestigious universities as Stanford University (USA), the Canadian University of Calgary, and Jiaotong University in Shanghai, China.

More than 70 teams from throughout the world got through to the finals of the top student competition in synthetic biology. The Bielefeld team was one of five German teams at the start. Bielefeld University has now participated in the iGEM competition for the third year running and already succeeded in qualifying for Boston in 2010 and 2011.

This year’s team, like its predecessors, made it into the ‘Sweet Sixteen’. ‘We stand in direct comparison with universities like Stanford and Cornell. At first, that seemed very intimidating, but we soon noticed they were having to fight exactly the same problems as we were. And with our know-how, we can match the pace here’, says Moritz Müller, a master student of molecular biotechnology.

Enzymes from fungi growing on trees filter out medicine residues from sewage and drinking water

Conventional methods of filtering waste water in sewage treatment plants are unable to completely remove medicine residues such as the estrogens in birth control pills. These residues then find their way into rivers and lakes and also accumulate in our drinking water. For fish and other aquatic life, estrogens can lead to reproductive and developmental disorders and even to the formation of female characteristics in males. The potential long-term consequences for human beings – declining sperm counts, infertility, various cancers, and osteoporosis – are still largely unknown.

The Bielefeld iGEM team has developed a biological filter in which specific enzymes (so-called laccases) break down these medicine residues. One known source of particularly efficient laccases is the turkey tail, a type of fungus that grows on trees. Using methods from synthetic biology, the students succeeded in synthesizing this enzyme and applying it to filter material.

‘We didn’t want to invent something totally crazy with our project – just because it’s technically feasible. We wanted to do something that could actually be put to use in the near future, perhaps in 20 years, and be a real benefit’, explains Robert Braun, a master student of molecular biotechnology.

‘The biofilter is such a project. And we have shown that our idea works. In principle, a company could now come along and develop our filter further. We ourselves have got to get back to our studies – most of us have rather neglected them for the last 6 months. However, the experiences we have gathered more than compensate for that’.

International competition

The iGEM competition has been held every year since 2003 by the Massachusetts Institute of Technology (MIT) in Boston. Starting as an MIT study course, the number of competitors has grown rapidly from five teams in 2004 to 190 in the present year. All teams face the same task: taking their project from the idea across the laboratory work to gaining funding and communicating the findings. On the student level, the iGEM can be seen as the world championship in synthetic biology that shows the future potential of this still young field of research. The Bielefeld iGEM team is being funded by Bielefeld University‘s Center for Biotechnology (CeBiTec) and the BIO.NRW Cluster Biotechnology North Rhine-Westphalia.

Contact:
Robert Braun, Bielefeld University
iGEM-Team Bielefeld-Germany
Telephone: 0162 3167424
Email: rbraun@igem-bielefeld.de

Ingo Lohuis | idw
Further information:
http://www.igem-bielefeld.de
http://2012.igem.org/Team:Bielefeld-Germany

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>