Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student Developer of Versatile “G-gels” Wins $30,000 Lemelson-Rensselaer Prize

06.03.2009
Yuehua “Tony” Yu, a doctoral student in Rensselaer’ Department of Chemistry and Chemical Biology, is the first researcher to create binary guanosine gels, or G-gels, with unique, highly tunable properties. The discovery, which could enable a practical, cost-effective, and scalable method for better exploiting the beneficial properties of many nanoparticles, earned Yu the $30,000 Lemelson-Rensselaer Student Prize.

A student at Rensselaer Polytechnic Institute has developed a new method for harnessing the enormous potential of nanoparticles, which could lead to a new generation of medical devices, drug delivery technologies, and other applications.

Yuehua “Tony” Yu, a doctoral student in Rensselaer’s Department of Chemistry and Chemical Biology, is the first researcher to create binary guanosine gels, or G-gels, with unique, highly tunable properties. The discovery, which could enable a practical, cost-effective, and scalable method for better exploiting the beneficial properties of many nanoparticles, earned Yu the $30,000 Lemelson-Rensselaer Student Prize.

“Future global challenges will demand leaders who are not only skilled scientists and engineers, but also innovators adept at problem solving and out-of-the-box thinking. The Lemelson-Rensselaer Student Prize recognizes ingenuity and inventiveness, while inspiring students toward excellence,” said Rensselaer President Shirley Ann Jackson. “Yuehua Yu is a shining example of this innovative spirit. A keen thinker and passionate researcher, he enjoys a rich understanding of technology, as well as a sharply focused determination to use his abilities for the betterment of all. We celebrate his achievement, and applaud all of the finalists for their dedication and effort. May they, and all of us, continue to foster a healthy scientific curiosity, and an unyielding drive for progress.”

Yu is the third recipient of the $30,000 Lemelson-Rensselaer Student Prize. The prize, first given in 2007, is awarded annually to a Rensselaer senior or graduate student who has created or improved a product or process, applied a technology in a new way, redesigned a system or in other ways demonstrated remarkable inventiveness

For videos and photos of the winner and award finalists, as well as a Webcast of the announcement ceremony, please visit: www.eng.rpi.edu/lemelson.

Helping hand for nanotech

Breakthroughs in nanotechnology hold the promise of touching and revolutionizing medicine, energy production and storage, water purification, electronics, and a host of other diverse fields. A key challenge for many researchers working with nanoparticles is simply getting the nanoscopic materials – some of which measure only a few billionths of a meter in length – where they need to go. Using liquid to disperse nanoparticles seems like a natural fit, but most materials have a tendency to aggregate, or clump together, when placed in liquids. Current solutions for properly dispersing nanomaterials in liquid often impact the materials’ properties, cause irreversible damage, or result in concentrations too low to be effective.

To address this problem, Yu investigated guanosine gels, or “G-gels.” Yu was the first researcher to develop a G-gel comprised of more than one guanosine compound. He discovered that some of these new binary G-gels were liquid at low temperature, but formed firm gels when heated to room or body temperature. Further study showed that binary G-gels were highly tunable.

This ability to easily convert the G-gels from liquid to gel, and back again, was a natural fit for the reliable delivery of nanoparticles. Yu’s G-gels proved to be an inexpensive and scalable means to gently, nondestructively disperse single-walled carbon nanotubes (SWNTs) and other nanoparticles at a high concentration. By simply controlling the temperature, Yu engineered G-gels that can selectively solubilize specific SWNTs, and then be easily removed from the site after the SWNTs are in place. The gels can be tuned to selectively solubilize SWNTs based on different properties, including conductivity and structure.

Another key application of G-gels is their ability to preserve, and even restore, enzyme activity. Because they begin as liquids and form gels at body temperature, the G-gels could be used to encapsulate live cells, enzymes, or other materials for delivery into the human body, with potential applications in drug and gene delivery, as well as implantable devices. Yu has also demonstrated the ability of G-gels to keep certain enzymes stable for months at room temperature, which has captured the attention of cosmetics and sunscreen companies.

Gifted scientist

Yu joined Rensselaer as a doctoral student in 2004, after earning his bachelor’s degree in chemistry and master’s degree in polymer science from Nankai University in China. In early 2005 he joined the research group of Rensselaer Professor Linda McGown, who heads the Department of Chemistry and Chemical Biology.

“Tony is one of the most brilliant and most creative students with whom I’ve ever worked. The elegance and simplicity of his inventions belie their novelty and ingenuity,” said McGown, who is also Yu’s academic adviser. “It’s been a privilege to work with such a gifted scientist.”

In his time at Rensselaer, Yu has filed for two patents related to his G-gel research, co-authored two journal papers, and delivered 10 presentations. He received the prestigious Rensselaer 2008 Founders Award for of Excellence, as well as the 2008 Slezak Memorial Fellowship and Baruch ’60 Award for Excellence in Energy-Related Research from Rensselaer. He is also an active member and former coach of Rensselaer intramural soccer and basketball teams.

Yu hails from the scenic city of Jiujiang, China, near the foot of Lushan Mountain. He expects to earn his doctorate in analytical chemistry from Rensselaer this spring.

Yu’s wife, Yuexi Wang, is a graduate student in chemistry at Rensselaer. Their daughter, Grace, is 8 months old.

The Lemelson-MIT Program

Yu joins last year’s winner of the $30,000 Lemelson-Rensselaer Student Prize, graduate student Martin Schubert, who invented the first polarized light emitting diodes (LED), an innovation that promises to improve the energy-efficiency and performance of liquid crystal displays (LCDs) for televisions, computers, cell phones, cameras, and other devices. In 2007, Rensselaer doctoral student Brian Schulkin won the first-ever $30,000 Lemelson-Rensselaer Student Prize for developing the first portable terahertz sensing device, the “Mini-Z,” which has since been commercialized and brought to market.

The $30,000 Lemelson-Rensselaer Student Prize is funded through a partnership with the Lemelson-MIT Program, which has awarded the $30,000 Lemelson-MIT Student Prize to outstanding student inventors at MIT since 1995.

Geoffrey von Maltzahn, a graduate student in the Harvard-MIT Division of Health Sciences and Technology, is the 2009 winner of the $30,000 Lemelson-MIT Student Prize. Von Maltzahn’s inventions include a new class of therapeutics that provide more precision to cancer ablation, and a communicating system of nanoparticles to more efficiently deliver drugs to tumors -- enhancing the overall efficacy of cancer therapy. He is also the co-founder of two companies dedicated to this research and development. More information is available at http://web.mit.edu/invent/n-pressreleases/n-press-09SP.html.

“The Lemelson-MIT Collegiate Student Prize finalists and winners have the potential to be the technological and entrepreneurial leaders of tomorrow,” states Joshua Schuler, Executive Director of the Lemelson-MIT Program. “The winners were selected based on the potential societal impact of their inventions, their ability to act as role models, and their unwavering dedication to invention. These innovators are helping to close the gap between science and societal needs by making contributions that will foster cultural appreciation for invention’s role in strengthening the U.S. economy.”

The Lemelson-MIT Program recognizes outstanding inventors, encourages sustainable new solutions to real-world problems, and enables and inspires young people to pursue creative lives and careers through invention.

Jerome H. Lemelson, one of U.S. history’s most prolific inventors, and his wife, Dorothy, founded the Lemelson-MIT Program at the Massachusetts Institute of Technology in 1994. It is funded by the Lemelson Foundation, a philanthropy that celebrates and supports inventors and entrepreneurs in order to strengthen social and economic life in the U.S. and developing countries. For more information, visit: http://web.mit.edu/invent.

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Awards Funding:

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Call for nominations of outstanding catalysis researchers for the Otto Roelen Medal 2018
20.06.2017 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Equipping form with function

23.06.2017 | Information Technology

New design improves performance of flexible wearable electronics

23.06.2017 | Materials Sciences

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>