Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structural biologist recognized for research on molecular motor structure and function

17.02.2009
The European Molecular Biology Organization (EMBO) and the Federation of European Biochemical Societies (FEBS) announced Anne Houdusse, head of the Structural Motility Team, CNRS/Institute Curie, Paris, France, as the winner of the FEBS/EMBO Women in Science Award for 2009.

The selection committee honoured Anne Houdusse's outstanding contributions to the field of structural biology and the understanding of the molecular mechanism of action of myosins.

The FEBS/EMBO Women in Science Award, now in its second year, recognizes and rewards the exceptional achievements of a female scientist in life sciences research over the previous five years. Winners of the award are role models who inspire future generations of women in science.

Anne Houdusse has established and clarified the molecular structure and function of myosins - a family of motor proteins vital for muscle contraction and motility processes such as cell division or transport of organelles within cells. She has transferred details seen in atomic resolution structures into functional insight and co-developed a theory that describes the movement of the molecular motors during muscle contraction.

The committee praised Anne's originality and research creativity as well as her courage to tackle difficult areas of science and persistence to achieve results.

"We are fortunate to work on a very puzzling and interesting question: how motor proteins convert chemical energy to produce force," said Anne Houdusse. "My laboratory's contribution is just one piece of this incredibly complex and important puzzle, and the current picture is the fruit of the research lead by many brilliant scientists. By trying to understand how to inhibit the activity of specific motors responsible for metastasis or cell proliferation we hope to develop therapeutic strategies against cancer."

The award winner credits the support of the Institute Curie and the dynamic collaboration with several researchers to contribute to the understanding of this fundamental problem in biology.

As group leader at the French National Research for Scientific Research (CNRS) Institute Curie in Paris, Anne Houdusse studies the structure and function of biological macromolecules, using biophysical techniques, particularly X-ray crystallography. She was a post-doctoral fellow at the Brandeis University in Massachusets, USA (1992-1998) where, with Carolyn Cohen and Andrew Szent Györgyi, she laid the foundation for her challenging work on structures of conventional myosins. At CNRS, she works closely with the US-American biologist Lee Sweeney.

The 2009 FEBS/EMBO Women in Science Award of 10,000 euro will be presented to Anne Houdusse on 5 July 2009 at the 34th FEBS Congress in Prague, Czech Republic, where she will present a special lecture.

Nominations for the 2010 FEBS/EMBO Women in Science Award close on 1 September. For more information, please visit: http://www.embo.org/gender/award.html or http://www.febs.org/women-award

Suzanne Beveridge | idw
Further information:
http://www.embo.org/about_embo/press/febs_embo_award09.html
http://www.embo.org/gender/award.html
http://www.febs.org/women-award

More articles from Awards Funding:

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Eduard Arzt receives highest award from German Materials Society
21.09.2017 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>